Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(5): 7466-7484, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36705276

ABSTRACT

Increasing the security of anticounterfeiting materials has been the most important challenge in recent years, and the development of dual-color photoluminescent inks with multi-level security, static/dynamic emission, and dynamic color change is an important solution to overcome this problem. In this study, the multi-functionalized copolymer nanoparticles containing different functional groups (with a concentration of 20 wt %), including ester, carboxylic acid, hydroxyl, epoxide, amide, and amine groups were synthesized successfully by the emulsion polymerization method. The results showed that the particle size and morphology of nanoparticles are affected by the polarity of functional groups. The prepared multi-functionalized copolymer nanoparticles were modified physically with spiropyran (photochromic and red fluorescence emission) and coumarin (cyan emission) derivatives to develop dual-color photoluminescent polymer nanoparticles with application in static-dynamic photoluminescent anticounterfeiting inks, which have multi-level security. The investigation of optical properties indicates that the kinetics of photochromism and photoluminescence properties of samples containing spiropyran is dependent on the local polarity on the surface of polymer nanoparticles. Hence, an increase in the polarity (functionalization with amide, carboxylic acid, and hydroxyl groups) has resulted in fast photochromism, high-intensity photoluminescence emission and increased the efficiency of the photoswitchable color change of emission from cyan to pink. Dual-color photoluminescent anticounterfeiting inks were prepared by mixing polymer nanoparticles containing spiropyran with polymer nanoparticles containing coumarin, in different ratios (1:1, 1:3, 1:5, 1:8, and 1:10). Obtained results showed that prepared samples have cyan emission under UV light of 254 nm (static mode), and a dynamic photoswitching of fluorescence emission from cyan to pink (as a function of irradiation time) was also observed under UV-light irradiation of 365 nm, which is well known as a dynamic mode of emission. The responsivity and intensity of dynamic photoluminescence emission are dependent on the local polarity of the surface functional groups, in which the samples based on amide functionalized copolymer nanoparticles displayed high-intensity emission in the static mode and high-intensity photoswitchable dual-color emission in the dynamic mode, in the case of all ratios of colloid solution mixtures. Printing security tags on cellulose paper by dual-color photoluminescent inks indicates advantages such as maximum printability, resolution, brightness, and static-dynamic photoluminescence emission with high intensity for inks based on amide functionalized nanoparticles. The static-dynamic dual-color photoluminescent anticounterfeiting ink with unique properties and multi-level security was reported for the first time by the collaboration of spiropyran and coumarin. This study can open a new approach and window to the future of advanced and high-security anticounterfeiting technologies.

2.
Polymers (Basel) ; 14(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35160630

ABSTRACT

Electronic devices based on polymer thin films have experienced a tremendous increase in their efficiency in the last two decades. One of the critical factors that affects the efficiency of polymer solar cells or light emitting devices is the presence of structural defects that controls non-radiative recombination. The purpose of this report is to demonstrate a non-trivial thickness dependence of optoelectronic properties and structure (dis)order in thin conductive poly(9,9-dioctyfluorene-alt-benzothiadiazole), F8BT, polymer films. The UV-Vis absorption spectra exhibited blue shift and peak broadening; significant changes in 0-0 and 0-1 radiative transition intensity was found in photoluminescence emission spectra. The density of state (DOS) was directly mapped by energy resolved-electrochemical impedance spectroscopy (ER-EIS). Satellite states 0.5 eV below the lowest unoccupied molecular orbital (LUMO) band were revealed for the thinner polymer films. Moreover, the decreasing of the deep states density in the band gap manifested an increment in the material structural ordering with increasing thickness. Changes in the ratio between crystalline phases with face-on and edge-on orientation of F8BT chains were identified in the films by grazing-incidence wide angle X-ray scattering technique. A thickness threshold in all investigated aspects of the films at a thickness of about 100 nm was observed that can be attributed to the development of J-H aggregation in the film structure and mutual interplay between these two modes. Although a specific structure-property relationship thickness threshold value may be expected for thin films prepared from various polymers, solvents and under different process conditions, the value of about 100 nm can be generally considered as the characteristic length scale of this phenomenon.

3.
Materials (Basel) ; 14(3)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513832

ABSTRACT

In recent work, the boron hydride anti-B18H22 was announced in the literature as a new laser dye, and, along with several of its derivatives, its solutions are capable of delivering blue luminescence with quantum yields of unity. However, as a dopant in solid polymer films, its luminescent efficiencies reduce dramatically. Clarification of underlying detrimental effects is crucial for any application and, thus, this contribution makes the initial steps in the use of these inorganic compounds in electrooptical devices based on organic polymer thin films. The photoluminescence behavior of the highly luminescent boron hydrides, anti-B18H22 and 3,3',4,4'-Et4-anti-B18H18, were therefore investigated. The quantum yields of luminescence and photostabilities of both compounds were studied in different solvents and as polymer-solvent blends. The photophysical properties of both boranes are evaluated and discussed in terms of their solvent-solute interactions using photoluminescence (PL) and NMR spectroscopies. The UV degradability of prepared thin films was studied by fluorimetric measurement. The effect of the surrounding atmosphere, dopant concentration and the molecular structure were assessed.

SELECTION OF CITATIONS
SEARCH DETAIL
...