Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bio Protoc ; 12(11)2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35799900

ABSTRACT

Our ability to move and breathe requires an efficient communication between nerve and muscle that mainly takes place at the neuromuscular junctions (NMJs), a highly specialized synapse that links the axon of a motor neuron to a muscle fiber. When NMJs or axons are disrupted, the control of muscle fiber contraction is lost and muscle are paralyzed. Understanding the adaptation of the neuromuscular system to permanent or transient denervation is a challenge to understand the pathophysiology of many neuromuscular diseases. There is still a lack of in vitro models that fully recapitulate the in vivo situation, and in vivo denervation, carried out by transiently or permanently severing the nerve afferent to a muscle, remains a method of choice to evaluate reinnervation and/or the consequences of the loss of innervation. We describe here a simple surgical intervention performed at the hip zone to expose the sciatic nerve in order to obtain either permanent denervation (nerve-cut) or transient and reversible denervation (nerve-crush). These two methods provide a convenient in vivo model to study adaptation to denervation. Graphical abstract.

2.
Elife ; 102021 08 27.
Article in English | MEDLINE | ID: mdl-34448452

ABSTRACT

Skeletal muscles are composed of hundreds of multinucleated muscle fibers (myofibers) whose myonuclei are regularly positioned all along the myofiber's periphery except the few ones clustered underneath the neuromuscular junction (NMJ) at the synaptic zone. This precise myonuclei organization is altered in different types of muscle disease, including centronuclear myopathies (CNMs). However, the molecular machinery regulating myonuclei position and organization in mature myofibers remains largely unknown. Conversely, it is also unclear how peripheral myonuclei positioning is lost in the related muscle diseases. Here, we describe the microtubule-associated protein, MACF1, as an essential and evolutionary conserved regulator of myonuclei positioning and maintenance, in cultured mammalian myotubes, in Drosophila muscle, and in adult mammalian muscle using a conditional muscle-specific knockout mouse model. In vitro, we show that MACF1 controls microtubules dynamics and contributes to microtubule stabilization during myofiber's maturation. In addition, we demonstrate that MACF1 regulates the microtubules density specifically around myonuclei, and, as a consequence, governs myonuclei motion. Our in vivo studies show that MACF1 deficiency is associated with alteration of extra-synaptic myonuclei positioning and microtubules network organization, both preceding NMJ fragmentation. Accordingly, MACF1 deficiency results in reduced muscle excitability and disorganized triads, leaving voltage-activated sarcoplasmic reticulum Ca2+ release and maximal muscle force unchanged. Finally, adult MACF1-KO mice present an improved resistance to fatigue correlated with a strong increase in mitochondria biogenesis.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Microfilament Proteins/metabolism , Microtubules/metabolism , Mitochondria, Muscle/metabolism , Muscle Fibers, Skeletal/metabolism , Myoblasts, Skeletal/metabolism , Neuromuscular Junction/metabolism , Organelle Biogenesis , Animals , Cell Line , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/ultrastructure , Excitation Contraction Coupling , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/genetics , Microtubules/genetics , Microtubules/ultrastructure , Mitochondria, Muscle/genetics , Mitochondria, Muscle/ultrastructure , Muscle Fatigue , Muscle Fibers, Skeletal/ultrastructure , Muscle Strength , Myoblasts, Skeletal/ultrastructure , Neuromuscular Junction/genetics , Neuromuscular Junction/ultrastructure , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...