Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Health Sci Eng ; 20(1): 29-39, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35669808

ABSTRACT

Background: Anaerobic digestion (AD) is the biological waste treatment method for the organic fraction of municipal solid waste (OFMSW). AD is notable for its ability to reduce volume and produce biogas from waste. However, the conventional AD of OFMSW has a low degradation rate. In recent years, some treatment method has been used to promote the biogas and methane production of AD. One of these methods is hydrothermal carbonization (HTC). Purpose: This study aimed to evaluate the effect of hydrothermal carbonization (HTC) temperature and hydrochar: OFMSW ratio as factors on biogas production, methane production, and methane content of anaerobic digestion (AD) as responses was investigated. Methods: This study determined the biomethane potential of raw and pretreated OFMSW (hydrochars) in 118 ml serum glass bottles. Based on the Hansen method, all tests were conducted at mesophilic temperature (37 ± 1 °C) in an incubator for 45 days. The response surface method and central composite model were used for designing experimental conditions. Quadratic models were used to estimate the correlation between factors and responses. Also, the optimal conditions for maximizing responses were determined. Results: Biogas production of mixing hydrochar and OFMSW was 41% more than control groups which contained OFMSW and inoculum. The optimal operating conditions to maximize all responses were applied in HTC temperature and hydrochar: OFMSW ratio of 179.366 °C and 2.406, respectively. In this condition, the maximum biogas production, methane production, and methane content were 394 mL/g VS, 284.351 mL/g VS, and 73.176%, respectively. Conclusion: As an OFMSW HTC pretreatment for AD, hydrochar additive has a significantly positive and negative effect on biogas production, methane production, and methane content of biogas depending on operating conditions. Therefore. It is necessary to consider the individual and interaction effects of the temperature and hydrochar: OFMSW ratio, obtain the optimal conditions and determine responses.

2.
Bioresour Technol ; 250: 26-34, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29153647

ABSTRACT

The potential of Gracilaria gracilis (G. gracilis) and Cladophora glomerata (C. glomerata) macro-algae species harvested from Caspian Sea for biocrude oil production under Hydrothermal Liquefaction (HTL) reaction at 350 °C and 15 min has been investigated. Furthermore, the effect of using recycled aqueous phase as the HTL reaction solvent was studied. The biocrude yield for G. gracilis and C. glomerata was 15.7 and 16.9 wt%, respectively with higher heating value (HHV) of 36.01 and 33.06 MJ/kg. The sources of each existing component in bio-oil were identified by GC-MS based on their suggested reaction pathways. Moreover, after two series of aqueous solution recycling, experiments showed that the bio-oil yield significantly increased compared with the initial condition. This increasing directly relates with recovery of carbon content from the aqueous solution residue.


Subject(s)
Biofuels , Gracilaria , Plant Oils , Polyphenols , Temperature , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...