Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Opt Lett ; 49(11): 3138-3141, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824347

ABSTRACT

Visible light communication (VLC) technology with rich spectrum resources is thought of as an essential component in the future ubiquitous communication networks. Accurately monitoring its transmission impairments is important for improving the stability of high-speed communication networks. Existing research on intelligently monitoring the signal-to-noise ratio (SNR) performance of VLC focuses primarily on the application of neural networks but neglects the physical nature of communication systems. In this work, we propose an intelligent SNR estimation scheme for VLC systems, which is based on the symmetry of constellation diagrams with classical deep learning frameworks. In order to increase the accuracy of the SNR estimation scheme, we introduce two data augmentation methods (DA): point normalization and quadrant normalization. The results of extensive simulations demonstrate that the proposed point normalization method is capable of improving accuracy by about 5, 10, 14, and 26%, respectively, for 16-, 64-, 256-, and 1024-quadrature amplitude modulation compared with the same network frameworks without DA. The effect of accuracy improvement can be further superimposed with traditional DA methods. Additionally, the extensive number of constellation points (e.g., 32, 64, 128, 256, 512, 1024, and 2048) on the accuracy of SNR estimation is also investigated.

2.
Sci Adv ; 10(22): eadk8357, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38809971

ABSTRACT

Nanomechanical measurements, especially the detection of weak contact forces, play a vital role in many fields, such as material science, micromanipulation, and mechanobiology. However, it remains a challenging task to realize the measurement of ultraweak force levels as low as nanonewtons with a simple sensing configuration. In this work, an ultrasensitive all-fiber nanonewton force sensor structure based on a single-mode-tapered U-shape multimode-single-mode fiber probe is proposed and experimentally demonstrated with a limit of detection of ~5.4 nanonewtons. The use of the sensor is demonstrated by force measurement on a human hair sample to determine the spring constant of the hair. The results agree well with measurements using an atomic force microscope for the spring constant of the hair. Compared with other force sensors based on optical fiber in the literature, the proposed all-fiber force sensor provides a substantial advancement in the minimum detectable force possible, with the advantages of a simple configuration, ease of fabrication, and low cost.

3.
Opt Express ; 32(5): 8081-8091, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439474

ABSTRACT

A digital pre-distortion (DPD) scheme based on an adaptive-memory-length look-up table (AML-LUT) is proposed and experimentally demonstrated in a four-level pulse amplitude modulation (4-PAM) underwater optical wireless communication (UOWC) system. By implementing adaptive memory length for each pattern in the AML-LUT-based DPD, the size of the AML-LUT can be significantly reduced without sacrificing performance compared to both the full-size LUT and the multi-symbol simplified look-up table (MSS-LUT)-based DPDs. The performance of the proposed AML-LUT-based DPD is experimentally evaluated for a 625 Mbit/s 4-PAM UOWC over 1 m transmission length. Experimental results show that compared with the full-size LUT with a memory length of 7 (LUT-7)-based DPD, the proposed AML-LUT-based DPD (i) incurs a marginal power penalty of 0.5 dB at both the 7% hard-decision forward error correction (HD-FEC) and KP4-FEC threshold limits, while simultaneously reducing the implementation complexity (i.e., the LUT size) by 93%; (ii) achieves comparable transmission performance compared to the MSS-LUT-based DPD, while reducing the implementation complexity by 89%; and (iii) shows great potential for high-speed, low-complexity and memory-efficient intensity modulation and direct detection (IM/DD) UOWC and short-reach optical interconnects.

4.
Sci Rep ; 14(1): 3296, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332022

ABSTRACT

Emerging areas such as the Internet of Things (IoT), wearable and wireless sensor networks require the implementation of optoelectronic devices that are cost-efficient, high-performing and capable of conforming to different surfaces. Organic semiconductors and their deposition via digital printing techniques have opened up new possibilities for optical devices that are particularly suitable for these innovative fields of application. In this work, we present the fabrication and characterization of high-performance organic photodiodes (OPDs) and their use as an optical receiver in an indoor visible light communication (VLC) system. We investigate and compare different device architectures including spin-coated, partially-printed, and fully-printed OPDs. The presented devices exhibited state-of-the-art performance and reached faster detection speeds than any other OPD previously reported as organic receivers in VLC systems. Finally, our results demonstrate that the high-performance of the fabricated OPDs can be maintained in the VLC system even after the fabrication method is transferred to a fully-inkjet-printed process deposited on a mechanically flexible substrate. A comparison between rigid and flexible samples shows absolute differences of only 0.2 b s-1 Hz-1 and 2.9 Mb s-1 for the spectral efficiency and the data rate, respectively.

5.
Appl Opt ; 62(30): 8204-8210, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-38038119

ABSTRACT

In this paper, for the first time, to the best of our knowledge, we experimentally demonstrate the use of a curved organic light emitting diode (OLED) as a transmitter (Tx) in the non-line-of-sight (NLOS) optical camera communication (OCC) link for an indoor environment using a camera as a receiver. The proposed NLOS-OCC scheme is evaluated for the signal-to-noise ratio (SNR) and the reception success rates R r s under key photographic and communication parameters, including exposure times t e x p and gain values G v, as well as the transmission frequency f s and the distance L. The SNR analysis is performed using a binary classification procedure based on a Gaussian mixture model for the first time, to the best of our knowledge, for OLED-based NLOS-OCC links. We also derive and demonstrate that the effect of G v on the SNR with respect to L is minimal based on the pixel illumination model. The initial analysis suggests that, for a wall reflector-based NLOS-OCC link that is 2 m long, the SNR and R r s increase by 1 dB and 4% (83-87%) for f s of 600 Hz, with an increase in t e x p of 1000-1500 µs and G v of 25-45 dB.

6.
Appl Opt ; 62(28): 7367-7372, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37855504

ABSTRACT

Non-line-of-sight (NLOS) optical camera communications (OCC) exhibit greater link availability and mobility than line-of-sight links, which are more susceptible to blocking and shadowing. In this work, we propose an NLOS OCC system, where the data signal is mapped into color pulse width modulation (CPWM) symbols prior to transmission using a red-, green-, and blue light-emitting diode. A convolutional-neural-network-based receiver is used to demodulate the CPWM signal. Based on experimental results, the proposed scheme effectively mitigates the effects of diffuse reflection induced intersymbol interference, resulting in an increased data transmission rate to 7.2 kbps over a link span of more than 2 m, which is typical for indoor applications.

7.
Talanta ; 257: 124385, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36827941

ABSTRACT

A critical challenge to realize ultra-high sensitivity with optical fiber interferometers for label free biosensing is to achieve high quality factors (Q-factor) in liquid. In this work a high Q-factor of 105, which significantly improves the detection resolution is described based on a structure of single mode -core-only -single mode fiber (SCS) with its multimode (or Mach-Zehnder) interference effect as a filter that is integrated into an erbium-doped fiber laser (EDFL) system for excitation. In the case study, the section of core-only fiber is functionalized with porcine immunoglobulin G (IgG) antibodies, which could selectively bind to bacterial pathogen of Staphylococcus aureus (S. aureus). The developed microfiber-based biosensing platform called SCS-based EDFL biosensors can effectively detect concentrations of S. aureus from 10 to 105 CFU/mL, with a responsivity of 0.426 nm wavelength shift in the measured spectrum for S. aureus concentration of 10 CFU/mL. The limit of detection (LoD) is estimated as 7.3 CFU/mL based on the measurement of S. aureus with minimum concentration of 10 CFU/mL. In addition, when a lower concentration of 1 CFU/mL is applied to the biosensor, a wavelength shift of 0.12 nm is observed in 10% of samples (1/10), indicating actual LoD of 1 CFU/mL for the proposed biosensor. Attributed to its good sensitivity, stability, reproducibility and specificity, the proposed EDFL based biosensing platform has great potentials for diagnostics.


Subject(s)
Biosensing Techniques , Staphylococcal Infections , Animals , Swine , Staphylococcus aureus , Erbium , Reproducibility of Results , Immunoglobulin G , Lasers
8.
Opt Express ; 30(24): 43910-43924, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36523079

ABSTRACT

Symmetries in system modeling can be exploited to obtain analytical results on the system behavior and to speed up computations using the symmetric model. This work explores the use of symmetries in radiant surfaces for calculating the induced irradiance distributions by developing a general mathematical expression. The obtained model is applied to flat, cylindrical, and spherical sources to obtain explicit expressions. An experimental evaluation of the flat source is carried out and compared with a traditional point source, and the obtained procedure for the flat scenario is compared with the direct integration approach, which shows an improvement in the computation time of at least two orders of magnitude with a relative root mean square error of less than 10%. The results show that the proposed approach enhances short-range predictions for extended sources. To demonstrate the impact of this in optical wireless communications we have outlined a few applications.

9.
Appl Opt ; 61(22): 6599-6608, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36255886

ABSTRACT

Wireless sensor networks (WSNs) are currently being deployed in everyday objects to collect and transmit information related to humidity, temperature, heartbeat, motion, etc. Such networks are part of the massive machine-type communication (mMTC) scenario within the fifth/sixth generation of wireless networks. In this paper, we consider the optimization and design of an optical WSN composed of multiple battery-powered sensor nodes based on light-emitting diode transmitters. Extending our previous work, we take into account both line-of-sight and diffuse-light propagation, and show that in indoor scenarios, diffuse radiation can improve link availability under shadowing/blocking and extend battery life. In order to optimize the optical wireless link parameters, we use a machine-learning approach based on a genetic algorithm to ascertain the performance limits of the system. The presented results indicate that the proposed system is a viable wireless option for WSNs within the context of mMTC.

10.
Opt Express ; 30(20): 35431-35443, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36258494

ABSTRACT

In this paper, we propose a non-line of sight (NLOS) visible light positioning (VLP) system using a binocular camera and a single light emitting diode (LED) for the realization of 3D positioning of an arbitrary posture. The proposed system overcomes the challenges of the shadowing/blocking of the line of sight (LOS) transmission paths between transmitters and receivers (Rxs) and the need for a sufficient number of LEDs that can be captured within the limited field of view of the camera-based Rx. We have developed an experimental testbed to evaluate the performance of the proposed system with results showing that the lowest average error and the root mean square error (RMSE) are 26.10 and 31.02 cm following an error compensation algorithm. In addition, a label-based enhanced VLP scheme is proposed for the first time, which has a great improvement on the system performance with the average error and RMSE values of 7.31 and 7.74 cm and a 90th percentile accuracies of < 11 cm.

11.
Sensors (Basel) ; 22(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35458864

ABSTRACT

In this paper, we study the design aspects of an indoor visible light positioning (VLP) system that uses an artificial neural network (ANN) for positioning estimation by considering a multipath channel. Previous results usually rely on the simplistic line of sight model with limited validity. The study considers the influence of noise as a performance indicator for the comparison between different design approaches. Three different ANN algorithms are considered, including Levenberg-Marquardt, Bayesian regularization, and scaled conjugate gradient algorithms, to minimize the positioning error (εp) in the VLP system. The ANN design is optimized based on the number of neurons in the hidden layers, the number of training epochs, and the size of the training set. It is shown that, the ANN with Bayesian regularization outperforms the traditional received signal strength (RSS) technique using the non-linear least square estimation for all values of signal to noise ratio (SNR). Furthermore, in the inner region, which includes the area of the receiving plane within the transmitters, the positioning accuracy is improved by 43, 55, and 50% for the SNR of 10, 20, and 30 dB, respectively. In the outer region, which is the remaining area within the room, the positioning accuracy is improved by 57, 32, and 6% for the SNR of 10, 20, and 30 dB, respectively. Moreover, we also analyze the impact of different training dataset sizes in ANN, and we show that it is possible to achieve a minimum εp of 2 cm for 30 dB of SNR using a random selection scheme. Finally, it is observed that εp is low even for lower values of SNR, i.e., εp values are 2, 11, and 44 cm for the SNR of 30, 20, and 10 dB, respectively.


Subject(s)
Algorithms , Neural Networks, Computer , Bayes Theorem , Least-Squares Analysis , Light
12.
Appl Opt ; 61(3): 676-682, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35200771

ABSTRACT

With the increasing use of organic light emitting diodes in lights, smart phones, wearable smartwatches, and computers, visible light-based device-to-device (D2D) communications has become more and more relevant. We propose D2D communications using smart phones' display pixels and their built-in cameras. We investigate the impact of receiver orientation and user mobility on the link performance. We derive a Gaussian model for the probability density function of the delay spread and optical path loss (OPL), and show that the channel delay spread decreases for a typical furnished room compared with an empty room, whereas the former has an increased OPL. In addition, we show that for the case of a furnished room and considering user mobility, the peak OPL values are about 64 and 62 dB, with and without considering the receiver's random orientation, respectively.

13.
J Opt Soc Am A Opt Image Sci Vis ; 38(8): 1130, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34613306

ABSTRACT

Corrections are given for errors in the presentation of equations in J. Opt. Soc. Am. A34, 1187 (2017)JOAOD60740-323210.1364/JOSAA.34.001187.

14.
Sensors (Basel) ; 21(12)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200593

ABSTRACT

The next generation wireless technology networks and beyond (i [...].


Subject(s)
Communication , Computer Communication Networks , Light
15.
Opt Lett ; 46(11): 2622-2625, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34061072

ABSTRACT

In this Letter, we propose and demonstrate a novel wireless communications link using an illuminating optical fiber as a transmitter (Tx) in optical camera communications. We demonstrate an indoor proof-of-concept system using an illuminating plastic optical fiber coupled with a light-emitting diode and a commercial camera as the Tx and the receiver, respectively. For the first time, to the best of our knowledge, we experimentally demonstrate flicker-free wireless transmission within the off-axis camera rotation angle range of 0-45° and the modulation frequencies of 300 and 500 Hz. We also show that a reception success rate of 100% is achieved for the camera exposure and gain of 200 µs and 25 dB, respectively.

16.
Sensors (Basel) ; 21(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801195

ABSTRACT

With advances in solid-state lighting, visible light communication (VLC) has emerged as a promising technology to enhance existing light-emitting diode (LED)-based lighting infrastructure by adding data communication capabilities to the illumination functionality. The last decade has witnessed the evolution of the VLC concept through global standardisation and product launches. Deploying VLC systems typically requires replacing existing light sources with new luminaires that are equipped with data communication functionality. To save the investment, it is clearly desirable to make the most of the existing illumination systems. This paper investigates the feasibility of adding data communication functionality to the existing lighting infrastructure. We do this by designing an experimental system in an indoor environment based on an off-the-shelf LED panel typically used in office environments, with the dimensions of 60 × 60 cm2. With minor modifications, the VLC function is implemented, and all of the modules of the LED panel are fully reused. A data rate of 40 Mb/s is supported at a distance of up to 2 m while using the multi-band carrierless amplitude and phase (CAP) modulation. Two main limiting factors for achieving higher data rates are observed. The first factor is the limited bandwidth of the LED string inside the panel. The second is the flicker due to the residual ripple of the bias current that is generated by the panel's driver. Flicker is introduced by the low-cost driver, which provides bias currents that fluctuate in the low frequency range (less than several kilohertz). This significantly reduces the transmitter's modulation depth. Concurrently, the driver can also introduce an effect that is similar to baseline wander at the receiver if the flicker is not completely filtered out. We also proposed a solution based on digital signal processing (DSP) to mitigate the flicker issue at the receiver side and its effectiveness has been confirmed.

17.
Sensors (Basel) ; 21(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923835

ABSTRACT

In this paper, we propose and validate an artificial neural network-based equalizer for the constant power 4-level pulse amplitude modulation in an optical camera communications system. We introduce new terminology to measure the quality of the communications link in terms of the number of row pixels per symbol Npps, which allows a fair comparison considering the progress made in the development of the current image sensors in terms of the frame rates and the resolutions of each frame. Using the proposed equalizer, we experimentally demonstrate a non-flickering system using a single light-emitting diode (LED) with Npps of 20 and 30 pixels/symbol for the unequalized and equalized systems, respectively. Potential transmission rates of up to 18.6 and 24.4 kbps are achieved with and without the equalization, respectively. The quality of the received signal is assessed using the eye-diagram opening and its linearity and the bit error rate performance. An acceptable bit error rate (below the forward error correction limit) and an improvement of ~66% in the eye linearity are achieved using a single LED and a typical commercial camera with equalization.

18.
Sensors (Basel) ; 21(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924686

ABSTRACT

In this paper, we investigate the performance of a vehicular visible light communications (VVLC) link with a non-collimated and incoherent light source (a light-emitting diode) as the transmitter (Tx), and two different optical receiver (Rx) types (a camera and photodiode (PD)) under atmospheric turbulence (AT) conditions with aperture averaging (AA). First, we present simulation results indicating performance improvements in the signal-to-noise ratio (SNR) under AT with AA with increasing size of the optical concentrator. Experimental investigations demonstrate the potency of AA in mitigating the induced signal fading due to the weak to moderate AT regimes in a VVLC system. The experimental results obtained with AA show that the link's performance was stable in terms of the average SNR and the peak SNR for the PD and camera-based Rx links, respectively with <1 dB SNR penalty for both Rxs, as the strength of AT increases compared with the link with no AT.

19.
Sensors (Basel) ; 21(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925300

ABSTRACT

This paper present simulation-based results on the impact of transmitter (Tx) position and orientation uncertainty on the accuracy of the visible light positioning (VLP) system based on the received signal strength (RSS). There are several constraining factors for RSS-based algorithms, particularly due to multipath channel characteristics and set-up uncertainties. The impact of Tx uncertainties on positioning error performance is studied, assuming a statistical modelling of the uncertainties. Simulation results show that the Tx uncertainties have a severe impact on the positioning error, which can be leveraged through the usage of more transmitters. Concerning a smaller Tx's position uncertainty of 5 cm, the average positioning errors are 23.3, 15.1, and 13.2 cm with the standard deviation values of 6.4, 4.1, and 2.7 cm for 4-, 9-, and 16-Tx cases, respectively. While for a smaller Tx' orientation uncertainty of 5°, the average positioning errors are 31.9, 20.6, and 17 cm with standard deviation values of 9.2, 6.3, and 3.9 cm for 4-, 9-, and 16-Tx cases, respectively.

20.
Sensors (Basel) ; 21(3)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33573034

ABSTRACT

The accuracy of the received signal strength-based visible light positioning (VLP) system in indoor applications is constrained by the tilt angles of transmitters (Txs) and receivers as well as multipath reflections. In this paper, for the first time, we show that tilting the Tx can be beneficial in VLP systems considering both line of sight (LoS) and non-line of sight transmission paths. With the Txs oriented towards the center of the receiving plane (i.e., the pointing center F), the received power level is maximized due to the LoS components on F. We also show that the proposed scheme offers a significant accuracy improvement of up to ~66% compared with a typical non-tilted Tx VLP at a dedicated location within a room using a low complex linear least square algorithm with polynomial regression. The effect of tilting the Tx on the lighting uniformity is also investigated and results proved that the uniformity achieved complies with the European Standard EN 12464-1. Furthermore, we show that the accuracy of VLP can be further enhanced with a minimum positioning error of 8 mm by changing the height of F.

SELECTION OF CITATIONS
SEARCH DETAIL
...