Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 197 Pt B: 1286-91, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26675870

ABSTRACT

Peanut proteins conarachin II, conarachin I and arachin were found to behave as highly selective fluorescence sensors for periodate amongst a set of different anions. The interactions of the proteins with periodate were also confirmed by other spectral methods and enzyme linked immunosorbent assay (ELISA). The results indicate a selective interaction of peanut proteins with periodate amongst chloride, sulphate, iodide, phosphate, nitrate, nitrite, bromide, fluoride, persulphate, acetate, thiosulphate, arsenite, arsenate, sulphite, and iodide. Periodate sensing using different synthesized organic molecules are already reported in the literature. In this article we report the efficiency of peanut proteins as anion sensor which are bioactive and inexpensive too. The protein periodate interactions have also resulted in a simultaneous reduction in allergenicity of the peanut proteins. A change in the secondary structure of the protein was found responsible for this change which was further established with the help of circular dichroism and Raman spectroscopy.


Subject(s)
Arachis/chemistry , Peanut Hypersensitivity/prevention & control , Periodic Acid/chemistry , Plant Proteins/chemistry , Anions/chemistry , Circular Dichroism , Enzyme-Linked Immunosorbent Assay , Protein Structure, Secondary , Spectrometry, Fluorescence , Spectrum Analysis, Raman
3.
Food Chem ; 176: 308-13, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25624238

ABSTRACT

Peanut is a rich source of plant protein which is inexpensive and abundant in nature. The peanut proteins however cause hypersensitive immunogenic responses in certain individuals. A minute amount of contamination may cause strong allergic reactions and even death. Many chemical pretreatment procedures have been developed and prescribed earlier for removal of this allergenicity. In the present article we have observed trace level Fe(III) and Cu(II) complexation of the protein fractions of peanut at pH 4.8 using different spectral methods. Consequently we studied the allergic response of Fe(III) complex of the protein fractions using competitive enzyme linked immunosorbent assay (ELISA) technique and found that there were considerable losses in allergenicity of conarachin I and arachin fractions upon complexation. Immunoassay of Cu(II) complex was avoided keeping in view the Cu toxicity in living systems. The results bring up a new strategy towards reduction of allergenicity using an inexpensive and simple methodology.


Subject(s)
Allergens/immunology , Arachis/immunology , Ferrous Compounds/immunology , Food Hypersensitivity/immunology , Plant Proteins/immunology , Allergens/isolation & purification , Enzyme-Linked Immunosorbent Assay , Ferrous Compounds/metabolism , Humans , Plant Proteins/isolation & purification , Plant Proteins/metabolism
4.
Analyst ; 138(8): 2308-14, 2013 Apr 21.
Article in English | MEDLINE | ID: mdl-23446647

ABSTRACT

The three aromatic amino acids, tyrosine, tryptophan and phenylalanine, play different physiological roles in life processes. Metal ions capable of binding these amino acids may aid in the reduction of effective concentration of these amino acids in any physiological system. Here we have studied the efficacy of some heavy metals for their complexation with these three amino acids. Bismuth has been found to bind selectively with these aromatic amino acids and this was confirmed using spectrofluorimetric, spectrophotometric and cyclic voltammetric studies. The series of heavy metals has been chosen because each of these metals remains associated with the others at very low concentration levels and Bi(III) is the least toxic amongst the other elements. So, selective recognition for Bi(III) would also mean no response for the other heavy elements if contaminants are present even at low concentration levels. The affinity towards these amino acids has been found to be in the order tryptophan < phenylalanine < tyrosine. The association constants of these amino acids have been calculated using Benesi-Hildebrand equations and the corresponding free energy change has also been calculated. The values of the association constants obtained from BH equations using absorbance values corroborate with the Stern-Volmer constants obtained from fluorimetric studies. The evidence for complexation is also supported by the results of cyclic voltammetry.


Subject(s)
Bismuth/chemistry , Phenylalanine/chemistry , Tryptophan/chemistry , Tyrosine/chemistry , Phenylalanine/analysis , Spectrometry, Fluorescence , Tryptophan/analysis , Tyrosine/analysis
5.
Anal Chem ; 84(17): 7555-61, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22827699

ABSTRACT

Fluorescence in poly(ethylene glycol) (PEGs 400-12000) solutions is reported here for the first time. PEG solutions form a vesicular organization with the hydrophilic groups attached at both ends which arrange themselves beyond a particular concentration and offer electron-dense regions at the center of the vesicle. These vesicles provide an inherent site for fluorescence generation in PEG solutions. Fluorescence emission was observed at ~380 nm with an excitation wavelength of 300 nm. PEG of molecular weight 6000 was found to show maximum emission intensity at a particular concentration. The formation of PEG vesicles (~1 nm size) was confirmed by dynamic light scattering (DLS) and confocal laser microscopy. On addition of metal ions the polymeric vesicle breaks up to monomeric PEG, and hence, the fluorescence intensity decreases with a red shift. Fluorescence lifetime measurements indicate the nature of complexation of the metals with PEG. Since PEGs are used as one of the phases in aqueous biphasic systems (ABS) of liquid-liquid extractions, the nature of the fluorescence emission spectrum of the PEG phase after extraction was studied. Metal extraction in the PEG-rich phase of an ABS leads to quenching of fluorescence in PEG.

SELECTION OF CITATIONS
SEARCH DETAIL
...