Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Microbiol ; 206(6): 272, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38772980

ABSTRACT

Phage-encoded endolysins have emerged as a potential substitute to conventional antibiotics due to their exceptional benefits including host specificity, rapid host killing, least risk of resistance. In addition to their antibacterial potency and biofilm eradication properties, endolysins are reported to exhibit synergism with other antimicrobial agents. In this study, the synergistic potency of endolysins was dissected with antimicrobial peptides to enhance their therapeutic effectiveness. Recombinantly expressed and purified bacteriophage endolysin [T7 endolysin (T7L); and T4 endolysin (T4L)] proteins have been used to evaluate the broad-spectrum antibacterial efficacy using different bacterial strains. Antibacterial/biofilm eradication studies were performed in combination with different antimicrobial peptides (AMPs) such as colistin, nisin, and polymyxin B (PMB) to assess the endolysin's antimicrobial efficacy and their synergy with AMPs. In combination with T7L, polymyxin B and colistin effectively eradicated the biofilm of Pseudomonas aeruginosa and exhibited a synergistic effect. Further, a combination of T4L and nisin displayed a synergistic effect against Staphylococcus aureus biofilms. In summary, the obtained results endorse the theme of combinational therapy consisting of endolysins and AMPs as an effective remedy against the drug-resistant bacterial biofilms that are a serious concern in healthcare settings.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Biofilms , Drug Synergism , Endopeptidases , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Staphylococcus aureus , Biofilms/drug effects , Endopeptidases/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Pseudomonas aeruginosa/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Nisin/pharmacology , Nisin/chemistry , Polymyxin B/pharmacology , Bacteriophages , Colistin/pharmacology , Bacteriophage T4/drug effects , Bacteriophage T4/physiology , Bacteriophage T7/drug effects , Bacteriophage T7/genetics
2.
J Inorg Biochem ; 238: 112059, 2023 01.
Article in English | MEDLINE | ID: mdl-36345069

ABSTRACT

A series of nine new complexes of ruthenium(II), rhodium(III), and iridium(III) incorporated with pyrazoline-based ligands were synthesized and characterized by various spectroscopic techniques such as FTIR, 1H NMR, 13C NMR, UV-Vis spectroscopy, ESI-MS spectrometry and X-ray crystallographic studies. All the synthesized compounds were assessed for their antibacterial abilities against Gram-positive and Gram-negative bacterial strains. The compounds showed better antibacterial activity against two Gram-positive bacteria (Staphylococcus aureus and Bacillus Thuringiensis), with activities superior to standard kanamycin. Antioxidant studies revealed the mild radical scavenging proficiency of the compounds. DNA binding studies using fluorescence spectroscopy showed that the compounds could bind to Salmon Milt DNA electrostatically via external contact and groove surface binding with moderate affinity. The synthesized complexes were tested for anticancer activity using cell cytotoxicity and apoptosis assays in Dalton's lymphoma (DL) cell lines. The findings were compared to cisplatin (the standard drug) under identical experimental conditions. The cell viability results showed that complex 7 induced higher cytotoxicity in the DL cell line than the other tested compounds. The results of the molecular docking analysis further suggest that selective complexes have complete contact with the active amino acids sites of anti-apoptotic Bcl-2 family protein.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Rhodium , Ruthenium , Ruthenium/chemistry , Iridium/pharmacology , Iridium/chemistry , Coordination Complexes/chemistry , Rhodium/chemistry , Molecular Docking Simulation , Cell Proliferation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Ligands , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , DNA/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...