Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 435: 129020, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35650738

ABSTRACT

Arsenic (As) is a ubiquitous carcinogenic metalloid that enters into human food chain, through rice consumption. To unravel the conundrum of oxidative vs. reductive stress, the differential root-system architecture (RSA) was studied under As (a ROS producer) and thiourea (TU; a ROS scavenger) alone treatments, which indicated 0.80- and 0.74-fold reduction in the number of lateral roots (NLR), respectively compared with those of control. In case of As+TU treatment, NLR was increased by 4.35-fold compared with those of As-stress, which coincided with partial restoration of redox-status and auxin transport towards the root-tip. The expression levels of 16 ROS related genes, including RBOHC, UPB-1 C, SHR1, PUCHI, were quantified which provided the molecular fingerprint, in accordance with endogenous ROS signature. LC-MS based untargeted and targeted metabolomics data revealed that As-induced oxidative stress was metabolically more challenging than TU alone-induced reductive stress. Cis/trans-ferruloyl putrescine and γ-glutamyl leucine were identified as novel As-responsive metabolites whose levels were decreased and increased, respectively under As+TU than As-treated roots. In addition, the overall amino acid accumulation was increased in As+TU than As-treated roots, indicating the improved nutritional availability. Thus, the study revealed dynamic interplay between "ROS-metabolites-RSA", to the broader context of TU-mediated amelioration of As-stress in rice.


Subject(s)
Arsenic , Oryza , Arsenic/metabolism , Arsenic/toxicity , Humans , Oryza/genetics , Oryza/metabolism , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Thiourea/metabolism , Thiourea/pharmacology
2.
Environ Pollut ; 276: 116719, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33640652

ABSTRACT

Arsenic (As) is a ubiquitous environmental carcinogen that enters the human food chain mainly through rice grains. In the present study, we evaluated the potential of thiourea (TU; non-physiological reactive oxygen species scavenger) in mitigating the negative effects of arsenic (As) stress in indica rice variety IR64, with the overall aim to reduce grain As accumulation. At seedling stage, As + TU treatment induced the formation of more numerous and longer crown roots compared with As alone. The As accumulation in main root, crown root, lower leaf and upper leaf was significantly reduced to 0.1-, 0.14-, 0.16-, 0.14-fold, respectively in As + TU treated seedlings compared with those of As alone. This reduced As accumulation was also coincided with light-dependent suppression in the expression levels of aquaporins and photosynthesis-related genes in As + TU treated roots. In addition, the foliar-supplemented TU under As-stress maintained reducing redox conditions which decreased the rate of As accumulation in flag leaves and, eventually grain As by 0.53-fold compared with those of As treatment. The agronomic feasibility of TU was validated under naturally As contaminated sites of Nadia (West Bengal, India). The tiller numbers and crop productivity (kg seed/ha) of TU-sprayed plants were increased by 1.5- and 1.18-fold, respectively; while, grain As accumulation was reduced by 0.36-fold compared with those of water-sprayed control. Thus, this study established TU application as a sustainable solution for cultivating rice in As-contaminated field conditions.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Arsenic/analysis , Edible Grain/chemistry , Humans , India , Plant Roots/chemistry , Seedlings/chemistry , Soil Pollutants/analysis
3.
Plant Mol Biol ; 93(6): 563-578, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28084609

ABSTRACT

KEY MESSAGE: We demonstrate that RNAs of StBEL11 and StBEL29 are phloem-mobile and function antagonistically to the growth-promoting characteristics of StBEL5 in potato. Both these RNAs appear to inhibit tuber growth by repressing the activity of target genes of StBEL5 in potato. Moreover, upstream sequence driving GUS expression in transgenic potato lines demonstrated that both StBEL11 and -29 promoter activity is robust in leaf veins, petioles, stems, and vascular tissues and induced by short days in leaves and stolons. Steady-state levels of their mRNAs were also enhanced by short-day conditions in selective organs. There are thirteen functional BEL1-like genes in potato that encode for a family of transcription factors (TF) ubiquitous in the plant kingdom. These BEL1 TFs work in tandem with KNOTTED1-types to regulate the expression of numerous target genes involved in hormone metabolism and growth processes. One of the StBELs, StBEL5, functions as a long-distance mRNA signal that is transcribed in leaves and moves into roots and stolons to stimulate growth. The two most closely related StBELs to StBEL5 are StBEL11 and -29. Together these three genes make up more than 70% of all StBEL transcripts present throughout the potato plant. They share a number of common features, suggesting they may be co-functional in tuber development. Upstream sequence driving GUS expression in transgenic potato lines demonstrated that both StBEL11 and -29 promoter activity is robust in leaf veins, petioles, stems, and vascular tissues and induced by short-days in leaves and stolons. Steady-state levels of their mRNAs were also enhanced by short-day conditions in specific organs. Using a transgenic approach and heterografting experiments, we show that both these StBELs inhibit growth in correlation with the long distance transport of their mRNAs from leaves to roots and stolons, whereas suppression lines of these two RNAs exhibited enhanced tuber yields. In summary, our results indicate that the RNAs of StBEL11 and StBEL29 are phloem-mobile and function antagonistically to the growth-promoting characteristics of StBEL5. Both these RNAs appear to inhibit growth in tubers by repressing the activity of target genes of StBEL5.


Subject(s)
Plant Proteins/metabolism , Plant Tubers/growth & development , RNA, Plant/genetics , Solanum tuberosum/growth & development , Solanum tuberosum/genetics , Gene Expression Regulation, Plant , Phloem/genetics , Photoperiod , Plant Proteins/genetics , Plant Tubers/genetics , Plants, Genetically Modified , Promoter Regions, Genetic , Transcription Factors/genetics
4.
J Exp Bot ; 67(14): 4255-72, 2016 07.
Article in English | MEDLINE | ID: mdl-27217546

ABSTRACT

Potato Homeobox 15 (POTH15) is a KNOX-I (Knotted1-like homeobox) family gene in potato that is orthologous to Shoot Meristemless (STM) in Arabidopsis. Despite numerous reports on KNOX genes from different species, studies in potato are limited. Here, we describe photoperiodic regulation of POTH15, its overexpression phenotype, and identification of its potential targets in potato (Solanum tuberosum ssp. andigena). qRT-PCR analysis showed a higher abundance of POTH15 mRNA in shoot tips and stolons under tuber-inducing short-day conditions. POTH15 promoter activity was detected in apical and axillary meristems, stolon tips, tuber eyes, and meristems of tuber sprouts, indicating its role in meristem maintenance and leaf development. POTH15 overexpression altered multiple morphological traits including leaf and stem development, leaflet number, and number of nodes and branches. In particular, the rachis of the leaf was completely reduced and leaves appeared as a bouquet of leaflets. Comparative transcriptomic analysis of 35S::GUS and two POTH15 overexpression lines identified more than 6000 differentially expressed genes, including 2014 common genes between the two overexpression lines. Functional analysis of these genes revealed their involvement in responses to hormones, biotic/abiotic stresses, transcription regulation, and signal transduction. qRT-PCR of selected candidate target genes validated their differential expression in both overexpression lines. Out of 200 randomly chosen POTH15 targets, 173 were found to have at least one tandem TGAC core motif, characteristic of KNOX interaction, within 3.0kb in the upstream sequence of the transcription start site. Overall, this study provides insights to the role of POTH15 in controlling diverse developmental processes in potato.


Subject(s)
Genes, Plant/genetics , Homeodomain Proteins/genetics , Plant Proteins/genetics , Solanum tuberosum/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Genes, Plant/physiology , Homeodomain Proteins/physiology , Plant Proteins/physiology , Polymerase Chain Reaction , Promoter Regions, Genetic/genetics , Promoter Regions, Genetic/physiology , Solanum tuberosum/growth & development , Solanum tuberosum/metabolism , Solanum tuberosum/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...