Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Bodyw Mov Ther ; 39: 441-446, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876666

ABSTRACT

BACKGROUND: Flatfoot is a structural and functional deformity of the foot that might change ground reaction force variables of gait. Evaluating the components of ground reaction force in three dimensions during gait is considered clinically important. This study aimed to investigate the components of ground reaction force, impulse, and loading rate during gait in people with flexible and rigid flatfoot compared to healthy subjects. 20 young women with flatfoot in two experimental groups (10 with rigid flatfoot and 10 with flexible flatfoot) and 10 healthy women in the control group participated in this study. Ground reaction force components during gait were measured using two force plates. The peak of ground reaction forces, impulse, and loading rate were then extracted. Data were processed and analyzed using MATLAB and SPSS software. One-way ANOVA with a significant level (P˂0.05) was used for statistical analysis. The results showed that peak braking force was higher in the rigid flatfoot group than in the control group (p = 0.016) and the flexible flatfoot group (p = 0.003). The posterior force loading rate was significantly higher in the rigid flatfoot group than in the flexible flatfoot group (P = 0.04). There was no significant difference in vertical loading rate between groups (P˃0.05). Since the maximal posterior ground reaction force was higher in the subjects with rigid flatfoot than in those with flexible flatfoot and healthy subjects, the increase in posterior ground reaction force is associated with an increase in anterior shear force at the knee.


Subject(s)
Flatfoot , Gait , Humans , Flatfoot/physiopathology , Female , Biomechanical Phenomena , Gait/physiology , Young Adult , Adult , Weight-Bearing/physiology , Case-Control Studies
2.
BMC Sports Sci Med Rehabil ; 16(1): 23, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243326

ABSTRACT

This study aimed to investigate the effects of caffeine ingestion on anaerobic performance and muscle activity in young athletes. In this randomized, double-blind, and placebo-controlled study, ten highly trained male post-puberal futsal players aged 15.9 ± 1.2 years conducted two laboratory sessions. Athletes performed the Wingate test 60 min after ingestion of caffeine (CAF, 6 mg/kg body mass) or placebo (PL, dextrose) (blinded administration). Peak power, mean power, and the fatigue index were assessed. During the performance of the Wingate test, electromyographic (EMG) data were recorded from selected lower limbs muscles to determine the root mean square (RMS), mean power frequency (MPF), and median power frequency (MDPF) as frequency domain parameters and wavelet (WT) as time-frequency domain parameters. Caffeine ingestion increased peak (0.80 ± 0.29 W/Kg; p = 0.01; d = 0.42) and mean power (0.39 ± 0.02 W/Kg; p = 0.01; d = 0.26) but did not significantly affect the fatigue index (52.51 ± 9.48%, PL: 49.27 ± 10.39%; p = 0.34). EMG data showed that the MPF and MDPF parameters decreased and the WT increased, but caffeine did not have a significant effect on these changes (p > 0.05). Moreover, caffeine ingestion did not significantly affect RMS changes in the selected muscles (p > 0.05). Here we showed that acute caffeine ingestion improved anaerobic performance without affecting EMG parameters in young male futsal athletes.

SELECTION OF CITATIONS
SEARCH DETAIL
...