Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2015: 791725, 2015.
Article in English | MEDLINE | ID: mdl-26436097

ABSTRACT

This review covers several basic methodologies of surface treatment and their effects on titanium (Ti) implants. The importance of each treatment and its effects will be discussed in detail in order to compare their effectiveness in promoting osseointegration. Published literature for the last 18 years was selected with the use of keywords like titanium dental implant, surface roughness, coating, and osseointegration. Significant surface roughness played an important role in providing effective surface for bone implant contact, cell proliferation, and removal torque, despite having good mechanical properties. Overall, published studies indicated that an acid etched surface-modified and a coating application on commercial pure titanium implant was most preferable in producing the good surface roughness. Thus, a combination of a good surface roughness and mechanical properties of titanium could lead to successful dental implants.


Subject(s)
Dental Implants , Titanium/pharmacology , Animals , Humans , Surface Properties
2.
Biomed Mater Eng ; 26 Suppl 1: S103-10, 2015.
Article in English | MEDLINE | ID: mdl-26405858

ABSTRACT

The calcium ferrite nano-particles (CaFe2O4 NPs) were synthesized using a sol-gel method for targeted drug delivery application. The proposed nano-particles were initially prepared by mixing calcium and iron nitrates that were added with citric acid in order to prevent agglomeration and subsequently calcined at a temperature of 550°C to obtain small particle size. The prepared nanoparticles were characterized by using an XRD (X-ray diffraction), which revealed the configuration of orthorhombic structures of the CaFe2O4 nano-particles. A crystallite size of ~13.59 nm was obtained using a Scherer's formula. Magnetic analysis using a VSM (Vibrating Sample Magnetometer analysis), revealed that the synthesized particles exhibited super-paramagnetic behavior having magnetization saturation of approximately 88.3emu/g. Detailed observation via the scanning electron microscopy (SEM) showed the calcium ferrite nano-particles were spherical in shape.


Subject(s)
Calcium/chemistry , Dextrans/chemistry , Ferric Compounds/chemistry , Magnetite Nanoparticles/chemistry , Molecular Targeted Therapy/methods , Nanocapsules/chemistry , Materials Testing , Nanocapsules/ultrastructure , Particle Size , Phase Transition
SELECTION OF CITATIONS
SEARCH DETAIL
...