Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Cancer Prev Res (Phila) ; 17(5): 201-208, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38638033

ABSTRACT

Women with germline pathogenic variants (PV) in the fumarate hydratase (FH) gene develop cutaneous and uterine leiomyomata and have an increased risk of developing aggressive renal cell carcinomas. Many of these women are unaware of their cancer predisposition until an atypical uterine leiomyoma is diagnosed during a myomectomy or hysterectomy, making a streamlined genetic counseling process after a pathology-based atypical uterine leiomyoma diagnosis critical. However, the prevalence of germline pathogenic/likely PVs in FH among atypical uterine leiomyomata cases is unknown. To better understand FH germline PV prevalence and current patterns of genetic counseling and germline genetic testing, we undertook a retrospective review of atypical uterine leiomyomata cases at a single large center. We compared clinical characteristics between the FH PV, FH wild-type (WT), and unknown genetic testing cohorts. Of the 144 cases with atypical uterine leiomyomata with evaluable clinical data, only 49 (34%) had documented genetic test results, and 12 (8.3%) had a germline FH PV. There were 48 IHC-defined FH-deficient cases, of which 41 (85%) had FH testing and nine had a germline FH PV, representing 22% of the tested cohort and 18.8% of the FH-deficient cohort. Germline FH PVs were present in 8.3% of evaluable patients, representing 24.5% of the cohort that completed genetic testing. These data highlight the disconnect between pathology and genetic counseling, and help to refine risk estimates that can be used when counseling patients with atypical uterine leiomyomata. PREVENTION RELEVANCE: Women diagnosed with fumarate hydratase (FH)-deficient uterine leiomyomata are at increased risk of renal cancer. This work suggests a more standardized pathology-genetic counseling referral pathway for these patients, and that research on underlying causes of FH-deficient uterine leiomyomata in the absence of germline FH pathogenic/likely pathogenic variants is needed.


Subject(s)
Fumarate Hydratase , Genetic Testing , Germ-Line Mutation , Leiomyoma , Uterine Neoplasms , Humans , Female , Fumarate Hydratase/genetics , Fumarate Hydratase/deficiency , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology , Uterine Neoplasms/diagnosis , Middle Aged , Retrospective Studies , Adult , Leiomyoma/genetics , Leiomyoma/pathology , Leiomyoma/diagnosis , Genetic Predisposition to Disease , Genetic Counseling , Leiomyomatosis/genetics , Leiomyomatosis/pathology , Leiomyomatosis/diagnosis
2.
Cancers (Basel) ; 16(5)2024 02 26.
Article in English | MEDLINE | ID: mdl-38473309

ABSTRACT

Standard methods of variant assessment in hereditary cancer susceptibility genes are limited by the lack of availability of key supporting evidence. In cancer, information derived from tumors can serve as a useful source in delineating the tumor behavior and the role of germline variants in tumor progression. We have previously demonstrated the value of integrating tumor and germline findings to comprehensively assess germline variants in hereditary cancer syndromes. Building on this work, herein, we present the development and application of the INT2GRATE|HPPGL platform. INT2GRATE (INTegrated INTerpretation of GeRmline And Tumor gEnomes) is a multi-institution oncology consortium that aims to advance the integrated application of constitutional and tumor data and share the integrated variant information in publicly accessible repositories. The INT2GRATE|HPPGL platform enables automated parsing and integrated assessment of germline, tumor, and genetic findings in hereditary paraganglioma-pheochromocytoma syndromes (HPPGLs). Using INT2GRATE|HPPGL, we analyzed 8600 variants in succinate dehydrogenase (SDHx) genes and their associated clinical evidence. The integrated evidence includes germline variants in SDHx genes; clinical genetics evidence: personal and family history of HPPGL-related tumors; tumor-derived evidence: somatic inactivation of SDHx alleles, KIT and PDGFRA status in gastrointestinal stromal tumors (GISTs), multifocal or extra-adrenal tumors, and metastasis status; and immunohistochemistry staining status for SDHA and SDHB genes. After processing, 8600 variants were submitted programmatically from the INT2GRATE|HPPGL platform to ClinVar via a custom-made INT2GRATE|HPPGL variant submission schema and an application programming interface (API). This novel integrated variant assessment and data sharing in hereditary cancers aims to improve the clinical assessment of genomic variants and advance precision oncology.

3.
Cancer Med ; 13(3): e6852, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38308423

ABSTRACT

OBJECTIVE: Turkish genome is underrepresented in large genomic databases. This study aims to evaluate the effect of allele frequency in the Turkish population in determining the clinical utility of germline findings in breast cancer, including invasive lobular carcinoma (ILC), mixed invasive ductal and lobular carcinoma (IDC-L), and ductal carcinoma (DC). METHODS: Two clinic-based cohorts from the Umraniye Research and Training Hospital (URTH) were used in this study: a cohort consisting of 132 women with breast cancer and a non-cancer cohort consisting of 492 participants. The evaluation of the germline landscape was performed by analysis of 27 cancer genes. The frequency and type of variants in the breast cancer cohort were compared to those in the non-cancer cohort to investigate the effect of population genetics. The variant allele frequencies in Turkish Variome and gnomAD were statistically evaluated. RESULTS: The genetic analysis identified 121 variants in the breast cancer cohort (actionable = 32, VUS = 89) and 223 variants in the non-cancer cohort (actionable = 25, VUS = 188). The occurrence of 21 variants in both suggested a possible genetic population effect. Evaluation of allele frequency of 121 variants from the breast cancer cohort showed 22% had a significantly higher value in Turkish Variome compared to gnomAD (p < 0.0001, 95% CI) with a mean difference of 60 times (ranging from 1.37-354.4). After adjusting for variant allele frequency using the ancestry-appropriate database, 6.7% (5/75) of VUS was reclassified to likely benign. CONCLUSION: To our knowledge, this is the first study of population genetic effects in breast cancer subtypes in Turkish women. Our findings underscore the need for a large genomic database representing Turkish population-specific variants. It further highlights the significance of the ancestry-appropriate population database for accurate variant assessment in clinical settings.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Carcinoma, Lobular , Humans , Female , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Genomics , Oncogenes
4.
Front Oncol ; 13: 1284690, 2023.
Article in English | MEDLINE | ID: mdl-38344144

ABSTRACT

The presence of variants of uncertain significance (VUS) in DNA mismatch repair (MMR) genes leads to uncertainty in the clinical management of patients being evaluated for Lynch syndrome (LS). Currently, there is no platform to systematically use tumor-derived evidence alongside germline data for the assessment of VUS in relation to LS. We developed INT2GRATE (INTegrated INTerpretation of GeRmline And Tumor gEnomes) to leverage information from the tumor genome to inform the potential role of constitutional VUS in MMR genes. INT2GRATE platform has two components: a comprehensive evidence-based decision tree that integrates well-established clinico-genomic data from both the tumor and constitutional genomes to help inform the potential relevance of germline VUS in LS; and a web-based user interface (UI). With the INT2GRATE decision tree operating in the backend, INT2GRATE UI enables the front-end collection of comprehensive clinical genetics and tumor-derived evidence for each VUS to facilitate INT2GRATE assessment and data sharing in the publicly accessible ClinVar database. The performance of the INT2GRATE decision tree was assessed by qualitative retrospective analysis of genomic data from 5057 cancer patients with MMR alterations which included 52 positive control cases. Of 52 positive control cases with LS and pathogenic MMR alterations, 23 had all the testing parameters for the evaluation by INT2GRATE. All these variants were correctly categorized as INT2GRATE POSITIVE. The stringent INT2GRATE decision tree flagged 29 of positive cases by identifying the absence or unusual presentation of specific evidence, highlighting the conservative INT2GRATE logic in favor of a higher degree of confidence in the results. The remaining 99% of cases were correctly categorized as INCONCLUSIVE due to the absence of LS criteria and ≥1 tumor parameters. INT2GRATE is an effective platform for clinical and genetics professionals to collect and assess clinical genetics and complimentary tumor-derived information for each germline VUS in suspected LS patients. Furthermore, INT2GRATE enables the collation of integrated tumor-derived evidence relevant to germline VUS in LS, and sharing them with a large community, a practice that is needed in precision oncology.

5.
Cancer Genet ; 268-269: 128-136, 2022 11.
Article in English | MEDLINE | ID: mdl-36368126

ABSTRACT

Concurrent pathogenic variants (PVs) in cancer predisposition genes have been reported in 0.1-2% of hereditary cancer (HC) patients. Determining concurrent PVs is crucial for the diagnosis, treatment, and risk assessment of unaffected family members. Next generation sequencing based diagnostic tests, which are widely used in HCs, enable the evaluation of multiple genes in parallel. We have screened the family members of a patient with bilateral breast cancer who was found to have concurrent PVs in BRCA1 (NM_007294.3;c.5102_5103del, p.Leu1701Glnfs*14) and MUTYH (NM_001128425.1;c.884C>T, p.Pro295Leu). Further analysis revealed concurrent PVs in CHEK2 (NM_007194.4;c.1427C>T, p.Thr476Met) and MUTYH (NM_001128425.1;c.884C>T, p.Pro295Leu) in the maternal uncle of the index case. Eight additional family members were found to have PVs in BRCA1 and MUTYH among 26 tested relatives. The sister and the brother of the index case who were diagnosed with breast and colon cancers, respectively, presented with the same genotype as the index case. Each family member was evaluated individually for clinical care and surveillance. This is the first report describing a family with BRCA1, MUTYH and CHEK2 concurrent PVs. Our findings provide valuable information for the assessment and management considerations for families with concurrent PVs.


Subject(s)
Breast Neoplasms , Genetic Predisposition to Disease , Female , Humans , BRCA1 Protein/genetics , Breast Neoplasms/pathology , Checkpoint Kinase 2/genetics , Family , Genotype , High-Throughput Nucleotide Sequencing
6.
Front Oncol ; 12: 942741, 2022.
Article in English | MEDLINE | ID: mdl-36091175

ABSTRACT

Genomic profiles of tumors are often unique and represent characteristic mutational signatures defined by DNA damage or DNA repair response processes. The tumor-derived somatic information has been widely used in therapeutic applications, but it is grossly underutilized in the assessment of germline genetic variants. Here, we present a comprehensive approach for evaluating the pathogenicity of germline variants in cancer using an integrated interpretation of somatic and germline genomic data. We have previously demonstrated the utility of this integrated approach in the reassessment of pathogenic germline variants in selected cancer patients with unexpected or non-syndromic phenotypes. The application of this approach is presented in the assessment of rare variants of uncertain significance (VUS) in Lynch-related colon cancer, hereditary paraganglioma-pheochromocytoma syndrome, and Li-Fraumeni syndrome. Using this integrated method, germline VUS in PMS2, MSH6, SDHC, SHDA, and TP53 were assessed in 16 cancer patients after genetic evaluation. Comprehensive clinical criteria, somatic signature profiles, and tumor immunohistochemistry were used to re-classify VUS by upgrading or downgrading the variants to likely or unlikely actionable categories, respectively. Going forward, collation of such germline variants and creation of cross-institutional knowledgebase datasets that include integrated somatic and germline data will be crucial for the assessment of these variants in a larger cancer cohort.

7.
MethodsX ; 9: 101761, 2022.
Article in English | MEDLINE | ID: mdl-35774415

ABSTRACT

The interpretation of hereditary genetic sequencing variants is often limited due to the absence of functional data and other key evidence to assess the role of variants in disease. Cancer genetics is unique, as two sets of genomic information are often available from a cancer patient: somatic and germline. Despite the progress made in the integrated analysis of somatic and germline findings, the assessment of pathogenicity of germline variants in high penetrance genes remains grossly underutilized. Indeed, standard ACMG/AMP guidelines for interpreting germline sequence variants do not address the evidence derived from tumor data in cancer. Previously, we have demonstrated the utility of somatic tumor data as supporting evidence to elucidate the role of germline variants in patients suspected with VHL syndrome and other cancers. We have leveraged the key elements of cancer genetics in these cases: genes with expected high disease penetrance and those with a known biallelic mechanism of tumorigenicity. Here we provide our optimized protocol for evaluating the pathogenicity of germline VHL variants using informative somatic profiling data. This protocol provides details of case selection, assessment of personal and family evidence, somatic tumor profiles, and loss of heterozygosity (LOH) as supporting evidence for the re-evaluation of germline variants.

8.
Cancer Genet ; 262-263: 102-106, 2022 04.
Article in English | MEDLINE | ID: mdl-35220194

ABSTRACT

Vulvar melanoma is a rare and aggressive cancer with a poor prognosis. The etiology of mucosal melanoma remains largely uncharacterized and no hereditary risk factors are established for this rare disease. While the germline variant MITF p.E318K confers an increased risk for cutaneous melanoma, this variant has not been associated with risk of non-cutaneous melanoma. Herein, we describe the presence of a germline MITF p.E318K pathogenic variant in a 47-year-old woman with vulvar melanoma and a family history of cutaneous melanoma in a first-degree relative. To our knowledge, this is the first reported case of MITF p.E318K in vulvar melanoma. This finding highlights the potential involvement of MITF p.E318K in risk assessment and clinical management of patients with vulvar melanoma. Further study of this observation is needed to inform appropriate identification of patients with non-cutaneous melanoma for MITF germline genomic evaluation and to potentially guide management for early detection of vulvar melanoma.


Subject(s)
Melanoma , Skin Neoplasms , Female , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Melanoma/genetics , Melanoma/pathology , Microphthalmia-Associated Transcription Factor/genetics , Middle Aged , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Melanoma, Cutaneous Malignant
9.
Data Brief ; 39: 107653, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34934780

ABSTRACT

Von Hippel-Lindau (VHL) syndrome is a hereditary cancer genetic condition associated with inactivating pathogenic alterations in the VHL tumor suppressor gene located at 3p (short arm of chromosome 3). Classic features of VHL include clear cell renal cell carcinoma, hemangioblastomas of the brain, spinal cord, and retina, pheochromocytoma, pancreatic cysts, and neuroendocrine tumors. Two sets of genomic information may be available from patients with VHL: the germline data showing the constitutional genetic profile and somatic profile obtained from patient tumor(s). Here we present both somatic and germline dataset from heterozygous carriers of germline VHL variants who exhibit non-syndromic VHL phenotypes. This data description article accompanies the paper "Pathogenicity of VHL variants in families with non-syndromic von Hippel-Lindau phenotypes: an integrated evaluation of germline and somatic genomic results'' by Huma Q. Rana, Diane R. Koeller, Alison Schwartz, Danielle K. Manning, Katherine A. Schneider, Katherine M. Krajewski, Toni K. Choueiri, Neal I. Lindeman, Judy E. Garber, Arezou A. Ghazani. We provide next generation sequencing (NGS) data obtained from DNA from tumors (renal cancer, bladder cancer, and cerebral hemangioblastoma) of three VHL carriers. The somatic dataset was analyzed for single nucleotide variants (SNVs) and copy number variants (CNVs) in 447 cancer genes, and structural variation (SVs) in 191 regions across 60 genes for rearrangements. We also present germline raw NGS data and analyzed SNV and CNV data in exonic regions of 133 hereditary cancer genes obtained from the peripheral blood of two VHL carriers.

10.
Eur J Med Genet ; 64(12): 104359, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34628056

ABSTRACT

Von Hippel-Lindau (VHL) syndrome is a hereditary tumor syndrome associated with germline loss-of-function pathogenic variants (PVs) in the VHL gene. VHL is classically associated with a high penetrance for many different tumor types. The same tumors may be sporadic in the setting of somatic VHL PVs. With more large-scale genome sequencing, variants with low penetrance or variable expressivity are identified. This has introduced challenges in patient management and the clinical interpretation of germline VHL variants identified in non-classic families. Herein, we report individuals from 3 non-classic families with VHL variants who presented with unexpected or non-syndromic phenotypes, but often with a VHL component tumor. In family 1, two siblings, age 61, with pathogenic VHL p.Leu188Val presented with clear cell renal cell carcinoma and lobular breast cancer. In family 2, the proband, age 82, was found to have pathogenic germline VHL p.Tyr98His on testing for metastatic bladder cancer. In family 3, four members carried germline VHL p.Pro81Ser (variant of uncertain significance), after the proband, age 40, presented with cerebellar hemangioblastoma. None of the individuals in the above three families met clinical criteria of classic VHL, suggesting germline VHL p.Leu188Val, p.Y98H, and p.Tyr98His may be low penetrant variants. Large studies are needed to evaluate penetrance and possible effect of genetic and non-genetic modifiers. Somatic sequencing performed on their respective tumors could help discern the etiology of the component tumors, highlighting the role of somatic evaluation in these cases. Paired examination of somatic and germline findings provided a more complete landscape of genome alterations in cancer development.


Subject(s)
Genetic Predisposition to Disease/genetics , Germ-Line Mutation/genetics , von Hippel-Lindau Disease/genetics , Adult , Aged, 80 and over , Humans , Male , Middle Aged , Pedigree , Phenotype
11.
Am J Case Rep ; 21: e927293, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33303731

ABSTRACT

BACKGROUND The diagnoses of adenomatous polyposis coli (APC)-associated polyposis conditions are typically based on suggestive personal features and/or family history, and the identification of a pathogenic variant in the APC gene. However, with large-scale genome sequencing, it is now possible to identify pathogenic variants before or even without the presentation of the expected clinical features. This case describes a novel pathogenic APC variant. CASE REPORT We report the unexpected identification of a rare, pathogenic germline APC variant, p.S2627Gfs*12 in an 80-year-old man with a diagnosis of renal cell carcinoma, without any family history of APC-associated polyposis or personal history of colorectal cancer. After the identification of the APC variant, a review of the patient's medical records showed a personal history of 15 adenomatous polyps over a decade ago, with no follow-up genetic testing at the time. CONCLUSIONS This novel APC variant has not been characterized to date. The presence of the APC-p.S2627Gfs*12 variant in this patient led to the recommendation of additional cascade genetic testing and surveillance measures for any family members who tested positive for this variant. This report highlights the broad spectrum of the APC-associated polyposis features, and a mild phenotype associated with the pathogenic APC p.S2627Gfs*12 variant.


Subject(s)
Adenomatous Polyposis Coli , Genes, APC , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli Protein/genetics , Aged, 80 and over , Germ Cells , Germ-Line Mutation , Humans , Male , Phenotype
12.
Am J Case Rep ; 21: e927415, 2020 Dec 27.
Article in English | MEDLINE | ID: mdl-33361738

ABSTRACT

BACKGROUND RET p.V804M is a known activating oncogenic variant that confers an increased risk for medullary thyroid carcinoma (MTC). Based on age-specific penetrance, the American Thyroid Association (ATA) categorizes this variant as posing moderate risk. Therefore, ATA guidelines endorse prophylactic thyroidectomy for carriers in childhood (by age 5-10 years) or adulthood, or when the serum calcitonin level becomes elevated. The recommendation for thyroidectomy is increasingly controversial due to the recently reported low penetrance of the RET p.V804M variant in a large unbiased ascertainment cohort. CASE REPORT We describe the unexpected identification of this variant in a 62-year-old woman undergoing broad, multigene cancer panel testing for her personal and family history of breast cancer. There was no known family history of MTC. Biochemical screening prompted by the RET p.V804M result revealed a mildly elevated serum calcitonin. Pathology examination of her thyroidectomy specimen revealed multifocal medullary thyroid microcarcinoma; her sibling's prophylactic thyroidectomy after a RET p.V840M-positive result similarly revealed early-stage MTC. CONCLUSIONS This report demonstrates the value of genetic counseling, shared decision-making, cascade testing, and timely thyroidectomy in the management of a patient with an unexpected RET p.V804M result.


Subject(s)
Carcinoma, Neuroendocrine , Thyroid Neoplasms , Adult , Carcinoma, Neuroendocrine/diagnosis , Carcinoma, Neuroendocrine/genetics , Child , Child, Preschool , Female , Humans , Middle Aged , Pedigree , Proto-Oncogene Proteins c-ret/genetics , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/genetics , Thyroid Neoplasms/surgery , Thyroidectomy
14.
Genet Med ; 21(5): 1100-1110, 2019 05.
Article in English | MEDLINE | ID: mdl-30287922

ABSTRACT

PURPOSE: Clinical sequencing emerging in health care may result in secondary findings (SFs). METHODS: Seventy-four of 6240 (1.2%) participants who underwent genome or exome sequencing through the Clinical Sequencing Exploratory Research (CSER) Consortium received one or more SFs from the original American College of Medical Genetics and Genomics (ACMG) recommended 56 gene-condition pair list; we assessed clinical and psychosocial actions. RESULTS: The overall adjusted prevalence of SFs in the ACMG 56 genes across the CSER consortium was 1.7%. Initially 32% of the family histories were positive, and post disclosure, this increased to 48%. The average cost of follow-up medical actions per finding up to a 1-year period was $128 (observed, range: $0-$678) and $421 (recommended, range: $141-$1114). Case reports revealed variability in the frequency of and follow-up on medical recommendations patients received associated with each SF gene-condition pair. Participants did not report adverse psychosocial impact associated with receiving SFs; this was corroborated by 18 participant (or parent) interviews. All interviewed participants shared findings with relatives and reported that relatives did not pursue additional testing or care. CONCLUSION: Our results suggest that disclosure of SFs shows little to no adverse impact on participants and adds only modestly to near-term health-care costs; additional studies are needed to confirm these findings.


Subject(s)
Genetic Testing/economics , Incidental Findings , Whole Genome Sequencing/ethics , Adult , Decision Making/ethics , Disclosure , Exome , Female , Genetic Testing/ethics , Genetic Testing/standards , Genomics/methods , Health Care Costs , Health Knowledge, Attitudes, Practice , Health Personnel , High-Throughput Nucleotide Sequencing/ethics , Humans , Intention , Male , Patients , Prevalence , Whole Genome Sequencing/economics
15.
Mol Genet Genomic Med ; 6(6): 898-909, 2018 11.
Article in English | MEDLINE | ID: mdl-30133189

ABSTRACT

BACKGROUND: Clinical genome and exome sequencing (CGES) is primarily used to address specific clinical concerns by detecting risk of future disease, clarifying diagnosis, or directing treatment. Additionally, CGES makes possible the disclosure of autosomal recessive and X-linked carrier results as additional secondary findings, and research about the impact of carrier results disclosure in this context is needed. METHODS: Representatives from 11 projects in the clinical sequencing exploratory research (CSER) consortium collected data from their projects using a structured survey. The survey focused on project characteristics, which variants were offered and/or disclosed to participants as carrier results, methods for carrier results disclosure, and project-specific outcomes. We recorded quantitative responses and report descriptive statistics with the aim of describing the variability in approaches to disclosing carrier results in translational genomics research projects. RESULTS: The proportion of participants with carrier results was related to the number of genes included, ranging from 3% (three genes) to 92% (4,600 genes). Between one and seven results were disclosed to those participants who received any positive result. Most projects offered participants choices about whether to receive some or all of the carrier results. There were a range of approaches to communicate results, and many projects used separate approaches for disclosing positive and negative results. CONCLUSION: Future translational genomics research projects will need to make decisions regarding whether and how to disclose carrier results. The CSER consortium experience identifies approaches that balance potential participant interest while limiting impact on project resources.


Subject(s)
Disclosure , Genetic Carrier Screening/methods , Genetic Counseling/methods , Facilities and Services Utilization , Genetic Carrier Screening/statistics & numerical data , Genetic Counseling/statistics & numerical data , Humans , Translational Research, Biomedical/methods , Whole Genome Sequencing/methods
16.
Cancer Discov ; 8(9): 1096-1111, 2018 09.
Article in English | MEDLINE | ID: mdl-29903880

ABSTRACT

Clinically relevant subtypes exist for pancreatic ductal adenocarcinoma (PDAC), but molecular characterization is not yet standard in clinical care. We implemented a biopsy protocol to perform time-sensitive whole-exome sequencing and RNA sequencing for patients with advanced PDAC. Therapeutically relevant genomic alterations were identified in 48% (34/71) and pathogenic/likely pathogenic germline alterations in 18% (13/71) of patients. Overall, 30% (21/71) of enrolled patients experienced a change in clinical management as a result of genomic data. Twenty-six patients had germline and/or somatic alterations in DNA-damage repair genes, and 5 additional patients had mutational signatures of homologous recombination deficiency but no identified causal genomic alteration. Two patients had oncogenic in-frame BRAF deletions, and we report the first clinical evidence that this alteration confers sensitivity to MAPK pathway inhibition. Moreover, we identified tumor/stroma gene expression signatures with clinical relevance. Collectively, these data demonstrate the feasibility and value of real-time genomic characterization of advanced PDAC.Significance: Molecular analyses of metastatic PDAC tumors are challenging due to the heterogeneous cellular composition of biopsy specimens and rapid progression of the disease. Using an integrated multidisciplinary biopsy program, we demonstrate that real-time genomic characterization of advanced PDAC can identify clinically relevant alterations that inform management of this difficult disease. Cancer Discov; 8(9); 1096-111. ©2018 AACR.See related commentary by Collisson, p. 1062This article is highlighted in the In This Issue feature, p. 1047.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Gene Expression Profiling/methods , Genetic Variation , Genomics/methods , Pancreatic Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Carcinoma, Pancreatic Ductal/drug therapy , DNA Repair , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Germ-Line Mutation , Homologous Recombination , Humans , MAP Kinase Signaling System , Male , Middle Aged , Pancreatic Neoplasms/drug therapy , Precision Medicine , Sequence Analysis, RNA/methods , Exome Sequencing/methods
17.
Genet Med ; 19(7): 787-795, 2017 07.
Article in English | MEDLINE | ID: mdl-28125075

ABSTRACT

PURPOSE: Implementing cancer precision medicine in the clinic requires assessing the therapeutic relevance of genomic alterations. A main challenge is the systematic interpretation of whole-exome sequencing (WES) data for clinical care. METHODS: One hundred sixty-five adults with metastatic colorectal and lung adenocarcinomas were prospectively enrolled in the CanSeq study. WES was performed on DNA extracted from formalin-fixed paraffin-embedded tumor biopsy samples and matched blood samples. Somatic and germ-line alterations were ranked according to therapeutic or clinical relevance. Results were interpreted using an integrated somatic and germ-line framework and returned in accordance with patient preferences. RESULTS: At the time of this analysis, WES had been performed and results returned to the clinical team for 165 participants. Of 768 curated somatic alterations, only 31% were associated with clinical evidence and 69% with preclinical or inferential evidence. Of 806 curated germ-line variants, 5% were clinically relevant and 56% were classified as variants of unknown significance. The variant review and decision-making processes were effective when the process was changed from that of a Molecular Tumor Board to a protocol-based approach. CONCLUSION: The development of novel interpretive and decision-support tools that draw from scientific and clinical evidence will be crucial for the success of cancer precision medicine in WES studies.Genet Med advance online publication 26 January 2017.


Subject(s)
Exome Sequencing/methods , Exome/genetics , Precision Medicine/methods , Adenocarcinoma/genetics , Adenocarcinoma of Lung , Adult , Colorectal Neoplasms/genetics , Databases, Genetic , Genomics/methods , Germ-Line Mutation/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Lung Neoplasms/genetics , Mutation/genetics , Prospective Studies , Sequence Analysis, DNA/methods
18.
Nanomedicine ; 13(3): 821-828, 2017 04.
Article in English | MEDLINE | ID: mdl-27993725

ABSTRACT

This study evaluates µNMR technology for molecular profiling of tumor fine needle aspirates and peripheral blood of melanoma patients. In vitro assessment of melanocyte (MART-1, HMB45) and MAP kinase signaling (pERK, pS6K) molecule expression was performed in human cell lines, while clinical validation was performed in an IRB-approved study of melanoma patients undergoing biopsy and blood sampling. Tumor FNA and blood specimens were compared with BRAF genetic analysis and cross-sectional imaging. µNMR in vitro analysis showed increased expression of melanocyte markers in melanoma cells as well as increased expression of phosphorylated MAP kinase targets in BRAF-mutant melanoma cells. Melanoma patient FNA samples showed increased pERK and pS6K levels in BRAF mutant compared with BRAF WT melanomas, with µNMR blood circulating tumor cell level increased with higher metastatic burden visible on imaging. These results indicate that µNMR technology provides minimally invasive point-of-care evaluation of tumor signaling and metastatic burden in melanoma patients.


Subject(s)
Melanocytes/pathology , Melanoma/diagnosis , Neoplastic Cells, Circulating/pathology , Point-of-Care Systems , Signal Transduction , Biopsy, Fine-Needle/methods , Cell Line, Tumor , Humans , Magnetic Resonance Imaging/methods , Melanocytes/metabolism , Melanoma/blood , Melanoma/metabolism , Melanoma/pathology , Mitogen-Activated Protein Kinases/analysis , Mitogen-Activated Protein Kinases/metabolism , Neoplasm Metastasis/diagnosis , Neoplasm Metastasis/pathology , Proto-Oncogene Proteins B-raf/analysis , Proto-Oncogene Proteins B-raf/metabolism
19.
Genet Med ; 19(5): 575-582, 2017 05.
Article in English | MEDLINE | ID: mdl-27811861

ABSTRACT

PURPOSE: While the diagnostic success of genomic sequencing expands, the complexity of this testing should not be overlooked. Numerous laboratory processes are required to support the identification, interpretation, and reporting of clinically significant variants. This study aimed to examine the workflow and reporting procedures among US laboratories to highlight shared practices and identify areas in need of standardization. METHODS: Surveys and follow-up interviews were conducted with laboratories offering exome and/or genome sequencing to support a research program or for routine clinical services. The 73-item survey elicited multiple choice and free-text responses that were later clarified with phone interviews. RESULTS: Twenty-one laboratories participated. Practices highly concordant across all groups included consent documentation, multiperson case review, and enabling patient opt-out of incidental or secondary findings analysis. Noted divergence included use of phenotypic data to inform case analysis and interpretation and reporting of case-specific quality metrics and methods. Few laboratory policies detailed procedures for data reanalysis, data sharing, or patient access to data. CONCLUSION: This study provides an overview of practices and policies of experienced exome and genome sequencing laboratories. The results enable broader consideration of which practices are becoming standard approaches, where divergence remains, and areas of development in best practice guidelines that may be helpful.Genet Med advance online publication 03 Novemeber 2016.


Subject(s)
Genetic Testing/methods , Laboratories/standards , Sequence Analysis, DNA/methods , Disclosure , Genetic Testing/standards , Humans , Incidental Findings , Information Dissemination , Laboratories/ethics , Practice Guidelines as Topic , Research Report , Sample Size , Sequence Analysis, DNA/standards , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...