Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 53(6): 3540-3551, 2016 08.
Article in English | MEDLINE | ID: mdl-26099309

ABSTRACT

Oxidative stress and cytosolic Ca(2+) overload have important roles on apoptosis in dorsal root ganglion (DRG) neurons after spinal cord injury (SCI). Hypericum perforatum (HP) has an antioxidant property in the DRGs due to its ability to modulate NADPH oxidase and protein kinase C pathways. We aimed to investigate the protective property of HP on oxidative stress, apoptosis, and Ca(2+) entry through transient receptor potential melastatin 2 (TRPM2) and transient receptor potential vanilloid 1 (TRPV1) channels in SCI-induced DRG neurons of rats. Rats were divided into four groups as control, HP, SCI, and SCI + HP. The HP groups received 30 mg/kg HP for three concessive days after SCI induction. The SCI-induced TRPM2 and TRPV1 currents and cytosolic free Ca(2+) concentration were reduced by HP. The SCI-induced decrease in glutathione peroxidase and cell viability values were ameliorated by HP treatment, and the SCI-induced increase in apoptosis, caspase 3, caspase 9, cytosolic reactive oxygen species (ROS) production, and mitochondrial membrane depolarization values in DRG of SCI group were overcome by HP treatment. In conclusion, we observed a protective role of HP on SCI-induced oxidative stress, apoptosis, and Ca(2+) entry through TRPM2 and TRPV1 in the DRG neurons. Our findings may be relevant to the etiology and treatment of SCI by HP. Graphical Abstract Possible molecular pathways of involvement of Hypericum perforatum (HP) on apoptosis, oxidative stress, and calcium accumulation through TRPM2 and TRPV1 channels in DRG neurons of SCI-induced rats. The TRPM2 channel is activated by ADP-ribose and oxidative stress through activation of ADP-ribose pyrophosphate although it was inhibited by N-(p-amylcinnamoyl) anthranilic acid (ACA) and 2-aminoethyl diphenylborinate (2APB). The TRPV1 channel is activated by oxidative stress and capsaicin and it is blocked by capsazepine. Injury in the DRG can result in augmented ROS release, leading to Ca(2+) uptake through TRPM2 and TRPV1 channels. Mitochondria were reported to accumulate Ca(2+), provided intracellular Ca(2+) rises, thereby leading to depolarization of mitochondrial membranes and release of apoptosis-inducing factors such as caspase 3 and caspase 9. HP via regulation of NADPH oxidase and PKC inhibits TRPM2 and TRPV1 channels. The molecular pathway may be a cause of SCI-induced pain and neuronal death, and the subject should be urgently investigated.


Subject(s)
Apoptosis/drug effects , Ganglia, Spinal/pathology , Hypericum/chemistry , Oxidative Stress/drug effects , Plant Extracts/therapeutic use , Spinal Cord Injuries/drug therapy , TRPM Cation Channels/metabolism , TRPV Cation Channels/metabolism , Animals , Calcium/metabolism , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Caspases/metabolism , Cell Survival/drug effects , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Hydrogen Peroxide , Ion Channel Gating/drug effects , Lipid Peroxidation/drug effects , Male , Membrane Potential, Mitochondrial/drug effects , Plant Extracts/pharmacology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Spinal Cord Injuries/pathology
2.
J Membr Biol ; 248(1): 83-91, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25381485

ABSTRACT

Electromagnetic radiation (EMR) and epilepsy are reported to mediate the regulation of apoptosis and oxidative stress through Ca(2+) influx. Results of recent reports indicated that EMR can increase temperature and oxidative stress of body cells, and TRPV1 channel is activated by noxious heat, oxidative stress, and capsaicin (CAP). We investigated the effects of mobile phone (900 MHz) EMR exposure on Ca(2+) influx, apoptosis, oxidative stress, and TRPV1 channel activations in the hippocampus of pentylenetetrazol (PTZ)-induced epileptic rats. Freshly isolated hippocampal neurons of twenty-one rats were used in study within three groups namely control, PTZ, and PTZ + EMR. The neurons in the three groups were stimulated by CAP. Epilepsy was induced by PTZ administration. The neurons in PTZ + EMR group were exposed to the 900 MHz EMR for 1 h. The apoptosis, mitochondrial membrane depolarization, intracellular reactive oxygen species (ROS), and caspase-3 and caspase-9 values were higher in PTZ and PTZ + EMR groups than in control. However, EMR did not add additional increase effects on the values in the hippocampal neurons. Intracellular-free Ca(2+) concentrations in fura-2 analyses were also higher in PTZ + CAP group than in control although their concentrations were decreased by TRPV1 channel blocker, capsazepine. However, there were no statistical changes on the Ca(2+) concentrations between epilepsy and EMR groups. In conclusion, apoptosis, mitochondrial, ROS, and Ca(2+) influx via TRPV1 channel were increased in the hippocampal neurons by epilepsy induction although the mobile phone did not change the values. The results indicated that TRPV1 channels in hippocampus may possibly be a novel target for effective target of epilepsy.


Subject(s)
Calcium/metabolism , Electromagnetic Radiation , Epilepsy/metabolism , Hippocampus/metabolism , Hippocampus/radiation effects , TRPV Cation Channels/metabolism , Animals , Apoptosis/radiation effects , Caspase 3/metabolism , Caspase 9/metabolism , Cell Phone , Male , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
3.
Cell Mol Neurobiol ; 34(6): 895-903, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24842665

ABSTRACT

Neurodegeneration associated with acute central nervous system injuries and diseases such as spinal cord injury and traumatic brain injury (TBI) are reported to be mediated by the regulation of apoptosis and oxidative stress through Ca(2+) influx. The thiol redox system antioxidants, such as N-acetylcysteine (NAC) and selenium (Se), display neuroprotective activities mediated at least in part by their antioxidant and anti-inflammatory properties. However, there are no reports on hippocampal apoptosis, cytosolic reactive oxygen species (ROS), or Ca(2+) values in rats with an induced TBI. Therefore, we tested the effects of Se and NAC administration on apoptosis, oxidative stress, and Ca(2+) influx through TRPV1 channel activations in the hippocampus of TBI-induced rats. The 32 rats were divided into four groups: control, TBI, TBI + NAC, and TBI + Se groups. Intraperitoneal administrations of NAC and Se were performed at 1, 24, 48, and 72 h after TBI induction. After 3 days, the hippocampal neurons were freshly isolated from the rats. In cytosolic-free Ca(2+) analyses, the neurons were stimulated with the TRPV1 channel agonist capsaicin, a pungent compound found in hot chili peppers. Cytosolic-free Ca(2+), apoptosis, cytosolic ROS levels, and caspase-3 and -9 activities were higher in the TBI group than control. The values in the hippocampus were decreased by Se and NAC administrations. In conclusion, we observed that NAC and Se have protective effects on oxidative stress, apoptosis, and Ca(2+) entry via TRPV1 channel activation in the hippocampus of this TBI model, but the effect of NAC appears to be much greater than that of Se. They are both interesting candidates for studying the amelioration of TBIs.


Subject(s)
Acetylcysteine/pharmacology , Apoptosis/drug effects , Brain Injuries/drug therapy , Calcium/metabolism , Hippocampus/drug effects , Selenium/pharmacology , Animals , Antioxidants/pharmacology , Brain Injuries/metabolism , Caspase 3/metabolism , Hippocampus/metabolism , Male , Neurons/drug effects , Neurons/metabolism , Rats, Sprague-Dawley
4.
Metab Brain Dis ; 29(3): 787-99, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24792079

ABSTRACT

Incidence rates of epilepsy and use of Wi-Fi worldwide have been increasing. TRPV1 is a Ca(2+) permeable and non-selective channel, gated by noxious heat, oxidative stress and capsaicin (CAP). The hyperthermia and oxidant effects of Wi-Fi may induce apoptosis and Ca(2+) entry through activation of TRPV1 channel in epilepsy. Therefore, we tested the effects of Wi-Fi (2.45 GHz) exposure on Ca(2+) influx, oxidative stress and apoptosis through TRPV1 channel in the murine dorsal root ganglion (DRG) and hippocampus of pentylentetrazol (PTZ)-induced epileptic rats. Rats in the present study were divided into two groups as controls and PTZ. The PTZ groups were divided into two subgroups namely PTZ + Wi-Fi and PTZ + Wi-Fi + capsazepine (CPZ). The hippocampal and DRG neurons were freshly isolated from the rats. The DRG and hippocampus in PTZ + Wi-Fi and PTZ + Wi-Fi + CPZ groups were exposed to Wi-Fi for 1 hour before CAP stimulation. The cytosolic free Ca(2+), reactive oxygen species production, apoptosis, mitochondrial membrane depolarization, caspase-3 and -9 values in hippocampus were higher in the PTZ group than in the control although cell viability values decreased. The Wi-Fi exposure induced additional effects on the cytosolic Ca(2+) increase. However, pretreatment of the neurons with CPZ, results in a protection against epilepsy-induced Ca(2+) influx, apoptosis and oxidative damages. In results of whole cell patch-clamp experiments, treatment of DRG with Ca(2+) channel antagonists [thapsigargin, verapamil + diltiazem, 2-APB, MK-801] indicated that Wi-Fi exposure induced Ca(2+) influx via the TRPV1 channels. In conclusion, epilepsy and Wi-Fi in our experimental model is involved in Ca(2+) influx and oxidative stress-induced hippocampal and DRG death through activation of TRPV1 channels, and negative modulation of this channel activity by CPZ pretreatment may account for the neuroprotective activity against oxidative stress.


Subject(s)
Apoptosis/radiation effects , Calcium/metabolism , Electromagnetic Radiation , Epilepsy/metabolism , Ganglia, Spinal/radiation effects , Hippocampus/radiation effects , TRPV Cation Channels/metabolism , Animals , Apoptosis/drug effects , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Caspase 3/metabolism , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Male , Neurons/drug effects , Neurons/metabolism , Neurons/radiation effects , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Rats
5.
Psychiatry Clin Neurosci ; 66(7): 594-601, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23252926

ABSTRACT

AIM: The aim of this study was to examine the effects of desmopressin on morphine withdrawal symptoms and vasopressin level in morphine-dependent subjects. METHODS: Wistar male rats were injected s.c. with morphine once per day for 5 consecutive days to induce morphine dependence. After morphine use ceased on day 5, an equal number of rats were assigned to one of four groups for either saline or desmopressin by either intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) injection. From days 5 to 10, urine was collected daily and tested for the presence of morphine, and withdrawal symptoms were monitored to assess the effects of desmopressin. RESULTS: Significant weight loss occurred among all morphine-addicted rats during the withdrawal period. With both methods (i.p. and i.c.v.), the period of urinary morphine excretion was shorter for the two groups that were given desmopressin (experimental groups) than the two groups that were not given desmopressin (control groups), and no significant difference in urinary morphine excretion was found between the two experimental groups. During the early stage of withdrawal, the severity of the withdrawal symptoms in the experimental groups was significantly lower than that in the control groups. CONCLUSION: Desmopressin decreases the extent of morphine withdrawal symptoms, indicating that this agent might be appropriate for treating morphine addiction. Desmopressin appears to reduce withdrawal symptoms not by exerting an anti-diuretic effect but rather by exerting an effect on the central nervous system.


Subject(s)
Behavior, Animal/drug effects , Deamino Arginine Vasopressin/therapeutic use , Morphine/adverse effects , Substance Withdrawal Syndrome/drug therapy , Animals , Body Weight/drug effects , Deamino Arginine Vasopressin/pharmacology , Male , Morphine/pharmacokinetics , Morphine Dependence/urine , Rats , Rats, Wistar , Substance Withdrawal Syndrome/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...