Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35745330

ABSTRACT

In this work, new treatments based on multi-walled carbon nanotubes (MWCNTs), MWCNTs decorated with zinc oxide (ZnO), MWCNTs decorated with hydroxyapatite (HAp) and MWCNTs decorated with silver (Ag) nanoparticles dispersed in PHBHV solution are proposed for improving sound oak wood properties. We hypothesize that the solutions containing decorated MWCNTs will be more efficient as wood consolidants, not only because of the improved mechanical properties of the treated wood but also because of the hydrophobic layer created on the wood surface. In order to test these hypotheses, the treatments' potential was investigated by a number of complex methods, such as colorimetric parameter measurements, water absorption tests, mechanical tests, artificial aging and antifungal tests. The data confirm that the treated wood materials have moderate stability, and the color differences are not perceived with the naked eye. A significant improvement of the treated samples was observed by water absorption, humidity and mechanical tests compared to untreated wood. The best results were obtained for samples treated by brushing with solutions based on decorated CNTs, which confirms that a uniform and thicker layer is needed on the surface to ensure better protection. The wood behavior with accelerated aging revealed that the control sample degraded faster compared to the other treated samples. Antifungal tests showed that higher growth inhibition was obtained for samples treated with 0.2% MWCNTs_ZnO + PHBHV. Considering all of the obtained results, it can be concluded that the most effective treatment was MWCNTs_ZnO + PHBHV at a nanocomposite concentration of 0.2%, applied by brushing. Thus, wood protection against mold and fungi will be achieved, simultaneously ensuring improved mechanical strength and water barrier properties and therefore maintaining the structural integrity of sound oak wood over time.

2.
Nanomaterials (Basel) ; 12(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35055256

ABSTRACT

This research focuses on the synthesis of multi-walled carbon nanotubes (MWCNTs) decorated with TiO2 nanoparticles (NPs) and incorporated in cellulose acetate-collagen film in order to obtain a new biomaterial with potential biomedical applications and improved antimicrobial activity. The successful decoration of the MWCNTs with TiO2 NPs was confirmed by several structural and morphological analysis, such as Fourier transformed infrared spectroscopy, Raman spectroscopy, X-ray diffraction and transmission electron microscopy. The obtained nanocomposites were further incorporated into cellulose acetate-collagen films, at different concentrations and absorption kinetics, antimicrobial activity and in vitro biocompatibility of the obtained films was investigated. The antimicrobial tests sustained that the presence of the nanocomposites into the polymeric matrix is an important aspect in increasing and maintaining the antimicrobial activity of the polymeric wound dressings over time. The biocompatibility and cytotoxicity of the obtained films was evaluated using cellular viability/proliferation assay and fluorescent microscopy which revealed the ability of the obtained materials as potential wound dressing biomaterial.

3.
Nanomaterials (Basel) ; 11(6)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072004

ABSTRACT

In this study, multi-walled carbon nanotubes (MWCNTs) were decorated with different types of nanoparticles (NPs) in order to obtain hybrid materials with improved antimicrobial activity. Structural and morphological analysis, such as Fourier transformed infrared spectroscopy, Raman spectroscopy, X-ray diffraction, transmission electron microscopy, environmental scanning electron microscopy/energy-dispersive X-ray spectroscopy and the Brunauer-Emmett-Teller technique were used in order to investigate the decoration of the nanotubes with NPs. Analysis of the decorated nanotubes showed a narrow size distribution of NPs, 7-13 nm for the nanotubes decorated with zinc oxide (ZnO) NPs, 15-33 nm for the nanotubes decorated with silver (Ag) NPs and 20-35 nm for the nanotubes decorated with hydroxyapatite (HAp) NPs, respectively. The dispersion in water of the obtained nanomaterials was improved for all the decorated MWCNTs, as revealed by the relative absorbance variation in time of the water-dispersed nanomaterials. The obtained nanomaterials showed a good antimicrobial activity; however, the presence of the NPs on the surface of MWCNTs improved the nanocomposites' activity. The presence of ZnO and Ag nanoparticles enhanced the antimicrobial properties of the material, in clinically relevant microbial strains. Our data proves that such composite nanomaterials are efficient antimicrobial agents, suitable for the therapy of severe infection and biofilms.

4.
Waste Manag ; 118: 391-401, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32942222

ABSTRACT

In the last several years, the electronic waste, especially printed circuit boards have significantly increased over the world, generating one of the highest rates of solid waste. The recycling process of the printed circuit boards implies mainly the recovery of metals and glass fibers, while the reuse of the polymeric support has remained largely in the phase of research. In this paper, the non-metallic part of printed circuit boards was used as filler (up to 30%), but also to improve the fire resistance of thermoplastic composites based on recycled polypropylene and diene block-copolymers. The synergy between the elastic effect of elastomers and the reinforcing effect of the waste powder into the thermoplastic matrix was studied by mechanical and dynamo-mechanical analysis, X-ray diffraction, optical microscopy, micro-calorimetry and thermo-gravimetrical analysis. Improved mechanical properties, especially impact strength was observed. The compatibization of components considering the interactions between the ethylene-butylene blocks from the hydrogenated and maleinized styrene-butadiene block-copolymer and recycled polypropylene, respectively between the MA groups and the functionalities of the waste powder, evidenced by FTIR, was highlighted by changes in the X-ray pattern and an increased fire resistance and thermal stability.


Subject(s)
Electronic Waste , Polypropylenes , Electronic Waste/analysis , Metals , Recycling
5.
Bull Environ Contam Toxicol ; 89(3): 580-6, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22760846

ABSTRACT

Our study was dedicated to the analysis of air pollution level with metals in Dambovita County, Romania; maps of the concentration distributions for air pollutants were drawn; statistical analysis includes calculation of the background concentrations and the contamination factors. The highest values of the contamination factor CF is 63.1 ± 6.63 for mosses samples and 33.12 ± 3.96 for lichens and it indicates extreme contaminations in the surroundings of steel works and an electric plant. The comparison of the distribution maps for Cr, Cu, Fe, Ni, Pb and Zn concentrations enables the identification of the pollution sources, the limits of areas with very high levels of pollution, the comparison of the concentration gradients in some areas and the influence of woodlands on the spread of pollutants through the air.


Subject(s)
Air Pollutants/analysis , Bryophyta/chemistry , Environmental Monitoring/methods , Lichens/chemistry , Metals/analysis , Spectrometry, X-Ray Emission/methods , Spectrophotometry, Atomic/methods
6.
Bull Environ Contam Toxicol ; 84(5): 641-6, 2010 May.
Article in English | MEDLINE | ID: mdl-20405104

ABSTRACT

The aim of this work was to determine the heavy metal content of the fruiting bodies of four species of wild edible mushrooms and their respective substrates. The samples were collected from Dambovita County, Romania, at various distances from of a metal smelter, to asses the concentration of Cr, Mn, Fe, Ni, Cu, Zn, Se and Cd in the wild edible mushrooms and their substrate using Energy Dispersive X-ray Fluorescence (EDXRF) spectrometry together with Flame Atomic Absorption (FAAS) spectrometry. A quantitative evaluation of the relationship of element uptake by mushrooms from substrate was made by calculating the coefficient accumulation (K(a)). A high accumulation of Zn (K(a) range 1.01 to 2.01) was observed in mushrooms growing in the vicinity of the metal smelter.


Subject(s)
Agaricales/metabolism , Food Contamination/analysis , Metallurgy , Metals, Heavy/metabolism , Biotransformation , Environmental Monitoring , Fruiting Bodies, Fungal/chemistry , Fruiting Bodies, Fungal/metabolism , Metals, Heavy/analysis , Spectrometry, X-Ray Emission , Spectrophotometry, Atomic , Zinc/analysis , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...