Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Immunol ; 23(10): 1424-1432, 2022 10.
Article in English | MEDLINE | ID: mdl-36138187

ABSTRACT

B cell progenitor acute lymphoblastic leukemia (B-ALL) treatment has been revolutionized by T cell-based immunotherapies-including chimeric antigen receptor T cell therapy (CAR-T) and the bispecific T cell engager therapeutic, blinatumomab-targeting surface glycoprotein CD19. Unfortunately, many patients with B-ALL will fail immunotherapy due to 'antigen escape'-the loss or absence of leukemic CD19 targeted by anti-leukemic T cells. In the present study, we utilized a genome-wide CRISPR-Cas9 screening approach to identify modulators of CD19 abundance on human B-ALL blasts. These studies identified a critical role for the transcriptional activator ZNF143 in CD19 promoter activation. Conversely, the RNA-binding protein, NUDT21, limited expression of CD19 by regulating CD19 messenger RNA polyadenylation and stability. NUDT21 deletion in B-ALL cells increased the expression of CD19 and the sensitivity to CD19-specific CAR-T and blinatumomab. In human B-ALL patients treated with CAR-T and blinatumomab, upregulation of NUDT21 mRNA coincided with CD19 loss at disease relapse. Together, these studies identify new CD19 modulators in human B-ALL.


Subject(s)
Burkitt Lymphoma , Lymphoma, B-Cell , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Antigens, CD19/genetics , Antigens, CD19/metabolism , Cleavage And Polyadenylation Specificity Factor/metabolism , Humans , Immunotherapy, Adoptive/adverse effects , Membrane Glycoproteins/metabolism , Polyadenylation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Chimeric Antigen/metabolism , Trans-Activators/metabolism
2.
Cancer Cell ; 35(3): 369-384.e7, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30799057

ABSTRACT

RNA-binding proteins (RBPs) are essential modulators of transcription and translation frequently dysregulated in cancer. We systematically interrogated RBP dependencies in human cancers using a comprehensive CRISPR/Cas9 domain-focused screen targeting RNA-binding domains of 490 classical RBPs. This uncovered a network of physically interacting RBPs upregulated in acute myeloid leukemia (AML) and crucial for maintaining RNA splicing and AML survival. Genetic or pharmacologic targeting of one key member of this network, RBM39, repressed cassette exon inclusion and promoted intron retention within mRNAs encoding HOXA9 targets as well as in other RBPs preferentially required in AML. The effects of RBM39 loss on splicing further resulted in preferential lethality of spliceosomal mutant AML, providing a strategy for treatment of AML bearing RBP splicing mutations.


Subject(s)
Gene Regulatory Networks , Gene Targeting/methods , Leukemia, Myeloid, Acute/pathology , Proteomics/methods , RNA-Binding Proteins/genetics , Up-Regulation , Alternative Splicing , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , HL-60 Cells , Homeodomain Proteins/genetics , Humans , Jurkat Cells , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Male , Mice , Neoplasm Transplantation , Prognosis , RNA-Binding Proteins/metabolism , Sequence Analysis, RNA/methods , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...