Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Oncol ; 10: 213, 2015 Oct 24.
Article in English | MEDLINE | ID: mdl-26499318

ABSTRACT

BACKGROUND: Exploiting biologic imaging, studies have been performed to boost dose to gross intraprostatic tumor volumes (GTV) while reducing dose elsewhere in the prostate. Interest in proton beams has increased due to superior normal-tissue sparing they afford. Our goal was to dosimetrically compare 3D conformal proton boost plans with intensity-modulated radiation therapy (IMRT) plans with respect to target coverage and avoiding organs at risk. METHODS: Treatment planning computer tomography scans of ten patients were selected. For each patient, two hypothetical but realistic GTVs each with a fixed volume were contoured in different anatomical locations of the prostate. IMRT and proton beam plans were created with a prescribed dose of 50.4 Gy to the initial planning target volume (PTV) including the PTV of the seminal vesicles (PSV), 70.2 Gy to the PTV of the prostate (PPS), and 90 Gy to the PTV of the gross tumor volumes (PGTVs). For proton plans, uncertainties of range and patient setup were accounted for; apertures were adjusted until the dose-volume coverage of PTVs matched that of the IMRT plan. For both plans, prescribed PTV doses were made identical to allow for comparing normal-tissue doses. RESULTS: Protons delivered more homogeneous but less conformal doses to PGTVs than IMRT did and comparable doses to PSV and PPS. Volumes of bladder and rectum receiving doses higher than 65 Gy were similar for both plans. However, volumes receiving less than 65 Gy were significantly reduced, i.e., protons reduced integral dose by 45.6 % and 26.5 % for rectum and bladder, respectively. This volume-sparing was also seen in femoral heads and penile bulb. CONCLUSIONS: Protons delivered comparable doses to targets in dose homogeneity and conformity and spared normal tissues from intermediate-to-low doses better than IMRT did. Further improvement of dose sparing and changes in homogeneity and conformity may be achieved by reducing proton range uncertainties and from implementing intensity modulation.


Subject(s)
Prostatic Neoplasms/radiotherapy , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Radiotherapy, Intensity-Modulated/methods , Humans , Male , Radiotherapy Dosage
2.
Med Phys ; 42(6): 2979-91, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26127051

ABSTRACT

PURPOSE: To check the accuracy of a gantry equipped with dual x-ray imagers and a robotic patient positioner for proton radiotherapy, and to evaluate the accuracy and feasibility of single-beam registration using the robotic positioner. METHODS: One of the proton treatment rooms at their institution was upgraded to include a robotic patient positioner (couch) with 6 degrees of freedom and dual orthogonal kilovoltage x-ray imaging panels. The wander of the proton beam central axis, the wander of the beamline, and the orthogonal image panel crosswires from the gantry isocenter were measured for different gantry angles. The couch movement accuracy and couch wander from the gantry isocenter were measured for couch loadings of 50-300 lb with couch rotations from 0° to ± 90°. The combined accuracy of the gantry, couch, and imagers was checked using a custom-made 30 × 30 × 30 cm(3) Styrofoam phantom with beekleys embedded in it. A treatment in this room can be set up and registered at a setup field location, then moved precisely to any other treatment location without requiring additional image registration. The accuracy of the single-beam registration strategy was checked for treatments containing multiple beams with different combinations of gantry angles, couch yaws, and beam locations. RESULTS: The proton beam central axis wander from the gantry isocenter was within 0.5 mm with gantry rotations in both clockwise (CW) and counterclockwise (CCW) directions. The maximum wander of the beamline and orthogonal imager crosswire centers from the gantry isocenter were within 0.5 and 0.8 mm, respectively, with the gantry rotations in CW and CCW directions. Vertical and horizontal couch wanders from the gantry isocenter were within 0.4 and 1.3 mm, respectively, for couch yaw from 0° to ± 90°. For a treatment with multiple beams with different gantry angles, couch yaws, and beam locations, the measured displacements of treatment beam locations from the one based on the initial setup beam registered at the gantry at 0°/180° and couch yaw at 0° were within 1.5 mm in three translations and 0.5° in three rotations for a 200 lb couch loading. CONCLUSIONS: Results demonstrate that the gantry equipped with a robotic patient positioner and dual imaging panels satisfies treatment requirements for proton radiotherapy. The combined accuracy of the gantry, couch, and imagers allows a patient to be registered at one setup position and then moved precisely to another treatment position by commanding the robotic patient positioner and delivering treatment without requiring additional image registration.


Subject(s)
Patient Positioning/instrumentation , Proton Therapy/instrumentation , Robotics , Tomography, X-Ray Computed , Humans , Image Processing, Computer-Assisted , Rotation
3.
J Appl Clin Med Phys ; 16(3): 5402, 2015 May 08.
Article in English | MEDLINE | ID: mdl-26103499

ABSTRACT

Radiographic film dosimetry suffers from its energy dependence in proton dosimetry. This study sought to develop a method of measuring proton beams by the film and to evaluate film response to proton beams for the constancy check of depth dose (DD). It also evaluated the film for profile measurements. To achieve this goal, from DDs measured by film and ion chamber (IC), calibration factors (ratios of dose measured by IC to film responses) as a function of depth in a phantom were obtained. These factors imply variable slopes (with proton energy and depth) of linear characteristic curves that relate film response to dose. We derived a calibration method that enables utilization of the factors for acquisition of dose from film density measured at later dates by adapting to a potentially altered processor condition. To test this model, the characteristic curve was obtained by using EDR2 film and in-phantom film dosimetry in parallel with a 149.65 MeV proton beam, using the method. An additional validation of the model was performed by concurrent film and IC measurement perpendicular to the beam at various depths. Beam profile measurements by the film were also evaluated at the center of beam modulation. In order to interpret and ascertain the film dosimetry, Monte Carlos simulation of the beam was performed, calculating the proton fluence spectrum along depths and off-axis distances. By multiplying respective stopping powers to the spectrum, doses to film and water were calculated. The ratio of film dose to water dose was evaluated. Results are as follows. The characteristic curve proved the assumed linearity. The measured DD approached that of IC, but near the end of the spread-out Bragg peak (SOBP), a spurious peak was observed due to the mismatch of distal edge between the calibration and measurement films. The width of SOBP and the proximal edge were both reproducible within a maximum of 5mm; the distal edge was reproducible within 1 mm. At 5 cm depth, the dose was reproducible within 10%. These large discrepancies were identified to have been contributed by film processor uncertainty across a layer of film and the misalignment of film edge to the frontal phantom surface. The deviations could drop from 5 to 2 mm in SOBP and from 10% to 4.5% at 5 cm depth in a well-controlled processor condition(i.e., warm up). In addition to the validation of the calibration method done by the DD measurements, the concurrent film and IC measurement independently validated the model by showing the constancy of depth-dependent calibration factors. For profile measurement, the film showed good agreement with ion chamber measurement. In agreement with the experimental findings, computationally obtained ratio of film dose to water dose assisted understanding of the trend of the film response by revealing relatively large and small variances of the response for DD and beam profile measurements, respectively. Conclusions are as follows. For proton beams, radiographic film proved to offer accurate beam profile measurements. The adaptive calibration method proposed in this study was validated. Using the method, film dosimetry could offer reasonably accurate DD constancy checks, when provided with a well-controlled processor condition. Although the processor warming up can promote a uniform processing across a single layer of the film, the processing remains as a challenge.


Subject(s)
Algorithms , Film Dosimetry/instrumentation , Film Dosimetry/methods , Models, Statistical , Radiotherapy, High-Energy/instrumentation , Radiotherapy, High-Energy/methods , Computer Simulation , Equipment Design , Equipment Failure Analysis , Protons , Reproducibility of Results , Sensitivity and Specificity
4.
Radiat Oncol ; 8: 73, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23531301

ABSTRACT

PURPOSE: To evaluate different strategies for proton lung treatment planning based on four-dimensional CT (4DCT) scans. METHODS AND MATERIALS: Twelve cases, involving only gross tumor volumes (GTV), were evaluated. Single image sets of (1) maximum intensity projection (MIP3) of end inhale (EI), middle exhale (ME) and end exhale (EE) images; (2) average intensity projection (AVG) of all phase images; and (3) EE images from 4DCT scans were selected as primary images for proton treatment planning. Internal target volumes (ITVs) outlined by a clinician were imported into MIP3, AVG, and EE images as planning targets. Initially, treatment uncertainties were not included in planning. Each plan was imported into phase images of 4DCT scans. Relative volumes of GTVs covered by 95% of prescribed dose and mean ipsilateral lung dose of a phase image obtained by averaging the dose in inspiration and expiration phases were used to evaluate the quality of a plan for a particular case. For comparing different planning strategies, the mean of the averaged relative volumes of GTVs covered by 95% of prescribed dose and its standard deviation for each planning strategy for all cases were used. Then, treatment uncertainties were included in planning. Each plan was recalculated in phase images of 4DCT scans. Same strategies were used for plan evaluation except dose-volume histograms of the planning target volumes (PTVs) instead of GTVs were used and the mean and standard deviation of the relative volumes of PTVs covered by 95% of prescribed dose and the ipsilateral lung dose were used to compare different planning strategies. RESULTS: MIP3 plans without treatment uncertainties yielded 96.7% of the mean relative GTV covered by 95% of prescribed dose (standard deviations of 5.7% for all cases). With treatment uncertainties, MIP3 plans yielded 99.5% of mean relative PTV covered by 95% of prescribed dose (standard deviations of 0.7%). Inclusion of treatment uncertainties improved PTV dose coverage but also increased the ipsilateral mean lung dose in general, and reduced the variations of the PTV dose coverage among different cases. Plans based on conventional axial CT scan (CVCT) gave the poorest PTV dose coverage (about 96% of mean relative PTV covered by 95% isodose) compared to MIP3 and EE plans, which resulted in 100% of PTV covered by 95% isodose for tumors with relatively large motion. AVG plans demonstrated PTV dose coverage of 89.8% and 94.4% for cases with small tumors. MIP3 plans demonstrated superior tumor coverage and were least sensitive to tumor size and tumor location. CONCLUSION: MIP3 plans based on 4DCT scans were the best planning strategy for proton lung treatment planning.


Subject(s)
Four-Dimensional Computed Tomography/methods , Lung Neoplasms/radiotherapy , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Humans , Lung Neoplasms/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...