Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 13(13): 6902-6922, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35695760

ABSTRACT

Fluid gels exhibit unique properties during oral processing and thus are well known in gastronomy as well as for use in dysphagia patients. Agarose fluid gels, which are produced by gelation under shear, in particular, show elastic solid-like behavior at rest but a fluid-like behavior once critical stress is exceeded. In a previous study this special behavior is addressed to the "hairy" structure of the microgel particles - dangling gel parts and chains on the particle surface - which plays a crucial role in the rheological, mechanical and tribological properties of the gels. In this paper, atomic force microscopy (AFM) was used to investigate the underlying microscopic structures and develop a consistent physical model, which relates the irregular particle structures and their heterogonous shape to the experimental observation of the previous studies. One crucial point is the inner structure of the gel particles, which show a dense area in the center, whereas towards the periphery the network and thus the elastic properties change. Agarose gels by forming helices and meshes, which defines the basic length scale for their elastic response in bulk. These properties in turn depend on the concentration and preparation conditions. The present study is meant to address the still prevalent lack of understanding regarding a direct structure-property relationship of these novel fluid gels. Controlling the properties of such fluid gels may play a crucial role in the texture modification of foods and beverages for dysphagia.


Subject(s)
Deglutition Disorders , Gels/chemistry , Humans , Rheology , Sepharose
2.
Curr Res Food Sci ; 4: 436-448, 2021.
Article in English | MEDLINE | ID: mdl-34258588

ABSTRACT

Agarose, a strongly gelling polysaccharide, is a common ingredient used to optimize the viscoelastic properties of a multitude of food products. Through aggregation of double helices via hydrogen bonds while cooling under quiescent conditions it forms firm and brittle gels. However, this behavior can be altered by manipulating the processing conditions viz shear. For example, gelation under shear leads to microgel particles with large surface area, which in turn leads to completely different rheological properties and texture. Such fluid gels are shown to play an important role in texture modification of foods and beverages for dysphagia patients. In this study, different concentration of agarose fluid gel (0.5 % wt, 1 % wt and 2 % wt) were considered. Rheological measurements of the microgel particles showed an increase of storage and loss modulus with increasing concentration. However, 1 % wt fluid gel exhibited the lowest viscosity in the low shear range and the shortest LVE range. Furthermore, the effect on the microstructure and size of gel particles were also investigated by using light microscopy and particle size analysis. It was observed that as the concentration of agarose increased the particle size and unordered chains present at the particle surface decreases. Based on our results, we propose specific models suggesting the impact of the particle size, the concentration and the "hairy" projections on the rheological and tribological properties that could help in understanding the differences in characteristics of fluid gels.

3.
J Colloid Interface Sci ; 529: 197-204, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29894938

ABSTRACT

HYPOTHESIS: Oleosomes are stabilized by a complex outer phospholipid-protein-layer. To improve understanding of its structure and stabilization mechanism, this shell has to be studied in extracellular native conditions. This should be possible by SANS using contrast variation. Oleosomes are expected to be highly temperature stable, with molecular changes occurring first in the protein shell. Direct measurements of changes in the shell structure are also important for processing methods, e.g. encapsulation. EXPERIMENTS: Extracted soybean oleosomes were studied directly and after encapsulation with pectin by SANS using contrast variation. In order to determine structure and size, a shell model of oleosomes was developed. The method was tested against a simple phospholipid-stabilized emulsion. The oleosomes' temperature stability was investigated by performing SANS at elevated temperatures. FINDINGS: Size (Rg = 1380 Å) and shell thickness of native and encapsulated oleosomes have been determined. This is the first report measuring the shell thickness of oleosomes directly. For native oleosomes, a shell of 9 nm thickness surrounds the oil core, corresponding to a layer of phospholipids and proteins. Up to 90 °C, no structural change was observed, confirming the oleosomes' high temperature stability. Successful coavervation of oleosomes was shown by an increase in shell thickness of 10 nm after electrostatic deposition of pectin.


Subject(s)
Glycine max/chemistry , Lipid Droplets/chemistry , Neutron Diffraction/methods , Emulsions/chemistry , Particle Size , Phospholipids/analysis , Scattering, Small Angle , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...