Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 114(8): 085004, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25768769

ABSTRACT

Turbulence in hot magnetized plasmas is shown to generate permeable localized transport barriers that globally organize into the so-called "ExB staircase" [G. Dif-Pradalier et al., Phys. Rev. E, 82, 025401(R) (2010)]. Its domain of existence and dependence with key plasma parameters is discussed theoretically. Based on these predictions, staircases are observed experimentally in the Tore Supra tokamak by means of high-resolution fast-sweeping X-mode reflectometry. This observation strongly emphasizes the critical role of mesoscale self-organization in plasma turbulence and may have far-reaching consequences for turbulent transport models and their validation.

2.
Phys Rev Lett ; 111(14): 145001, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-24138245

ABSTRACT

The generation and dynamics of transport barriers governed by sheared poloidal flows are analyzed in flux-driven 5D gyrokinetic simulations of ion temperature gradient driven turbulence in tokamak plasmas. The transport barrier is triggered by a vorticity source that polarizes the system. The chosen source captures characteristic features of some experimental scenarios, namely, the generation of a sheared electric field coupled to anisotropic heating. For sufficiently large shearing rates, turbulent transport is suppressed and a transport barrier builds up, in agreement with the common understanding of transport barriers. The vorticity source also governs a secondary instability--driven by the temperature anisotropy (T(∥)≠T(⊥)). Turbulence and its associated zonal flows are generated in the vicinity of the barrier, destroying the latter due to the screening of the polarization source by the zonal flows. These barrier relaxations occur quasiperiodically, and generically result from the decoupling between the dynamics of the barrier generation, triggered by the source driven sheared flow, and that of the crash, triggered by the secondary instability. This result underlines that barriers triggered by sheared flows are prone to relaxations whenever secondary instabilities come into play.

3.
Article in English | MEDLINE | ID: mdl-23496626

ABSTRACT

We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at different temperatures. The model exhibits a characteristic length of thermalization that can be associated with an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.


Subject(s)
Energy Transfer , Models, Chemical , Plasma Gases/chemistry , Computer Simulation , Hot Temperature , Particle Size
4.
Phys Rev Lett ; 110(12): 125002, 2013 Mar 22.
Article in English | MEDLINE | ID: mdl-25166813

ABSTRACT

The impact on turbulent transport of geodesic acoustic modes excited by energetic particles is evidenced for the first time in flux-driven 5D gyrokinetic simulations using the Gysela code. Energetic geodesic acoustic modes (EGAMs) are excited in a regime with a transport barrier in the outer radial region. The interaction between EGAMs and turbulence is such that turbulent transport can be enhanced in the presence of EGAMs, with the subsequent destruction of the transport barrier. This scenario could be particularly critical in those plasmas, such as burning plasmas, exhibiting a rich population of suprathermal particles capable of exciting energetic modes.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(2 Pt 2): 025401, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20866867

ABSTRACT

A systematic, constructive and self-consistent procedure to quantify nonlocal, nondiffusive action at a distance in plasma turbulence is exposed and applied to turbulent heat fluxes computed from the state-of-the-art full- f, flux-driven gyrokinetic GYSELA and XGC1 codes. A striking commonality is found: heat transport below a dynamically selected mesoscale has the structure of a Lévy distribution, is strongly nonlocal, nondiffusive, scale-free, and avalanche mediated; at larger scales, we report the observation of a self-organized flow structure which we call the " E × B staircase" after its planetary analog.

6.
Phys Rev Lett ; 103(6): 065002, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-19792575

ABSTRACT

The impact of ion-ion collisions on confinement is investigated with the full-f and global gyrokinetic Gysela code through a series of nonlinear turbulence simulations for tokamak parameters. A twofold scan in the turbulence drive and in collisionality is performed, highlighting (i) a heat transport expressed in terms of critical quantities-threshold and exponent, (ii) a first evidence of turbulent generation of poloidal momentum, and (iii) the dominance of mean flow shear, mediated through the turbulent corrugation of the mean profiles, with regard to the oft-invoked zonal flow shear.

7.
Phys Rev Lett ; 102(19): 195002, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19518964

ABSTRACT

The theoretical study of plasma turbulence is of central importance to fusion research. Experimental evidence indicates that the confinement time results mainly from the turbulent transport of energy, the magnitude of which depends on the turbulent state resulting from nonlinear saturation mechanisms, in particular, the self-generation of coherent macroscopic structures and large scale flows. Plasma geometry has a strong impact on the structure and magnitude of these flows and also modifies the mode linear growth rates. Nonlinear global gyrokinetic simulations in realistic tokamak magnetohydrodynamic equilibria show how plasma shape can control the turbulent transport. Results are best described in terms of an effective temperature gradient. With increasing plasma elongation, the nonlinear critical effective gradient is not modified while the stiffness of transport is decreasing.

8.
Phys Rev Lett ; 94(10): 105001, 2005 Mar 18.
Article in English | MEDLINE | ID: mdl-15783490

ABSTRACT

A new mechanism for intermittent relaxations of transport barriers is found by using three dimensional fluid turbulence simulations. This mechanism is generic since it only requires a stationary E x B shear flow. It is found here that if the flow shear increases faster than linearly with heating power, the relaxation frequency decreases with power. An analytical study reveals that this nonlinear dynamics is governed by a time delay for effective velocity shear stabilization.

SELECTION OF CITATIONS
SEARCH DETAIL
...