Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 2274, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859196

ABSTRACT

Massive unemployment during the COVID-19 pandemic could result in an eviction crisis in US cities. Here we model the effect of evictions on SARS-CoV-2 epidemics, simulating viral transmission within and among households in a theoretical metropolitan area. We recreate a range of urban epidemic trajectories and project the course of the epidemic under two counterfactual scenarios, one in which a strict moratorium on evictions is in place and enforced, and another in which evictions are allowed to resume at baseline or increased rates. We find, across scenarios, that evictions lead to significant increases in infections. Applying our model to Philadelphia using locally-specific parameters shows that the increase is especially profound in models that consider realistically heterogenous cities in which both evictions and contacts occur more frequently in poorer neighborhoods. Our results provide a basis to assess eviction moratoria and show that policies to stem evictions are a warranted and important component of COVID-19 control.


Subject(s)
COVID-19/transmission , Communicable Disease Control/methods , Housing/legislation & jurisprudence , Pandemics/prevention & control , Policy , COVID-19/economics , COVID-19/epidemiology , COVID-19/virology , Cities/legislation & jurisprudence , Cities/statistics & numerical data , Communicable Disease Control/legislation & jurisprudence , Computer Simulation , Housing/economics , Humans , Models, Statistical , Philadelphia/epidemiology , SARS-CoV-2/pathogenicity , Unemployment/statistics & numerical data , Urban Population/statistics & numerical data
2.
Sci Adv ; 4(3): eaao3820, 2018 03.
Article in English | MEDLINE | ID: mdl-29511735

ABSTRACT

Classical electromagnetism and quantum mechanics are both central to the modern understanding of the physical world and its ongoing technological development. Quantum simulations of electromagnetic forces have the potential to provide information about materials and systems that do not have conveniently solvable theoretical descriptions, such as those related to quantum Hall physics, or that have not been physically observed, such as magnetic monopoles. However, quantum simulations that simultaneously implement all of the principal features of classical electromagnetism have thus far proved elusive. We experimentally realize a simulation in which a charged quantum particle interacts with the knotted electromagnetic fields peculiar to a topological model of ball lightning. These phenomena are induced by precise spatiotemporal control of the spin field of an atomic Bose-Einstein condensate, simultaneously creating a Shankar skyrmion-a topological excitation that was theoretically predicted four decades ago but never before observed experimentally. Our results reveal the versatile capabilities of synthetic electromagnetism and provide the first experimental images of topological three-dimensional skyrmions in a quantum system.

3.
Nat Commun ; 6: 8626, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26478089

ABSTRACT

Computational encryption, information-theoretic secrecy and quantum cryptography offer progressively stronger security against unauthorized decoding of messages contained in communication transmissions. However, these approaches do not ensure stealth--that the mere presence of message-bearing transmissions be undetectable. We characterize the ultimate limit of how much data can be reliably and covertly communicated over the lossy thermal-noise bosonic channel (which models various practical communication channels). We show that whenever there is some channel noise that cannot in principle be controlled by an otherwise arbitrarily powerful adversary--for example, thermal noise from blackbody radiation--the number of reliably transmissible covert bits is at most proportional to the square root of the number of orthogonal modes (the time-bandwidth product) available in the transmission interval. We demonstrate this in a proof-of-principle experiment. Our result paves the way to realizing communications that are kept covert from an all-powerful quantum adversary.

SELECTION OF CITATIONS
SEARCH DETAIL
...