Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
2.
Atten Percept Psychophys ; 85(1): 99-112, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36175763

ABSTRACT

Symmetry perception studies have generally used two stimulus types: figural and dot patterns. Here, we designed a novel figural stimulus-a wedge pattern-made of centrally aligned pseudorandomly positioned wedges. To study the effect of pattern figurality and colour on symmetry perception, we compared symmetry detection in multicoloured wedge patterns with nonfigural dot patterns in younger and older adults. Symmetry signal was either segregated or nonsegregated by colour, and the symmetry detection task was performed under two conditions: with or without colour-based attention. In the first experiment, we compared performance for colour-symmetric patterns that varied in the number of wedges (24 vs. 36) and number of colours (2 vs. 3) and found that symmetry detection was facilitated by attention to colour when symmetry and noise signals were segregated by colour. In the second experiment, we compared performance for wedge and dot patterns on a sample of younger and older participants. Effects of attention to colour in segregated stimuli were magnified for wedge compared with dot patterns, with older and younger adults showing different effects of attention to colour on performance. Older adults significantly underperformed on uncued wedge patterns compared with dot patterns, but their performance improved greatly through colour cueing, reaching performance levels similar to young participants. Thus, while confirming the age-related decline in symmetry detection, we found that this deficit could be alleviated in figural multicoloured patterns by attending to the colour that carries the symmetry signal.


Subject(s)
Cues , Noise , Humans , Aged , Color , Aging , Pattern Recognition, Visual
3.
PLoS One ; 17(9): e0274564, 2022.
Article in English | MEDLINE | ID: mdl-36107920

ABSTRACT

Numerosity estimation around the subitizing range is facilitated by a shape-template matching process and shape-coding mechanisms are selective to visual features such as colour and luminance contrast polarity. Objects in natural scenes are often embedded within other objects or textured surfaces. Numerosity estimation is improved when objects are grouped into small clusters of the same colour, a phenomenon termed groupitizing, which is thought to leverage on the subitizing system. Here we investigate whether numerosity mechanisms around the subitizing range are selective to colour, luminance contrast polarity and orientation, and how spatial organisation of context and target elements modulates target numerosity estimation. Stimuli consisted of a small number (3-to-6) of target elements presented either in isolation or embedded within context elements. To examine selectivity to colour, luminance polarity and orientation, we compared target-only conditions in which all elements were either the same or different along one of these feature dimensions. We found comparable performance in the same and different feature conditions, revealing that subitizing mechanism do not depend on 'on-off' luminance-polarity, colour or orientation channel interactions. We also measured the effect of varying spatial organisation of (i) context, by arranging the elements either in a grid, mirror-symmetric, translation-symmetric or random; (ii) target, by placing the elements either mirror-symmetric, on the vertices of simple shapes or random. Our results indicate higher accuracy and lower RTs in the grid compared to all other context types, with mirror symmetric, translation and random arrangements having comparable effects on target numerosity. We also found improved performance with shape-target followed by symmetric and random target arrangements in the absence and presence of context. These findings indicate that numerosity mechanisms around the subitizing range are not selective to colour, luminance polarity and orientation, and that symmetric, translation and random contexts organisations inhibit target-numerosity encoding stronger than regular/grid context.


Subject(s)
Vision, Ocular
4.
J Vis ; 22(8): 16, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35900725

ABSTRACT

The tilt illusion (TI) describes the phenomenon in which a surround inducer grating of a particular orientation influences the perceived orientation of a central test grating. Typically, inducer-test orientation differences of 5 to 40 degrees cause the test orientation to appear shifted away from the inducer orientation (i.e. repulsion). For orientation differences of 60 to 90 degrees, the inducer typically causes the test grating orientation to appear shifted toward the inducer orientation, termed here "large-angle" attraction. Both repulsion and large-angle attraction effects have been observed in contrast-modulated as well as luminance-modulated grating patterns. Here, we show that a secondary, "small-angle" 0 to 10 degrees attraction effect is observed in contrast-modulated and orientation-modulated gratings, as well as in luminance-modulated gratings that are relatively low in spatial frequency, low in contrast, or contain added texture. The observed small-angle attraction, which can exceed in magnitude that of the repulsion and large-angle attraction effects, is dependent on the spatial phase relationship between the inducer and test, being maximal when in-phase. Both small-angle attraction and repulsion effects are reduced when a gap is introduced between the test and inducer. Our findings suggest that small-angle attraction in the TI is a result of assimilation of the inducer pattern into the receptive fields of neurons sensitive to the test.


Subject(s)
Illusions , Humans , Illusions/physiology , Neurons , Orientation/physiology
5.
Sci Rep ; 10(1): 12413, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32709892

ABSTRACT

Recognition of simple shapes and numerosity estimation for small quantities are often studied independently of each other, but we know that these processes are both rapid and accurate, suggesting that they may be mediated by common neural mechanisms. Here we address this issue by examining how spatial configuration, shape complexity, and luminance polarity of elements affect numerosity estimation. We directly compared the Event Related Potential (ERP) time-course for numerosity estimation under shape and random configurations and found a larger N2 component for shape over lateral-occipital electrodes (250-400 ms), which also increased with higher numbers. We identified a Left Mid Frontal (LMF; 400-650 ms) component over left-lateralised medial frontal sites that specifically separated low and high numbers of elements, irrespective of their spatial configuration. Different luminance-polarities increased N2 amplitude only, suggesting that shape but not numerosity is selective to polarity. Functional microstates confined numerosity to a strict topographic distribution occurring within the LMF time-window, while a microstate responding only to shape-configuration was evidenced earlier, in the N2 time-window. We conclude that shape-coding precedes numerosity estimation, which can be improved when the number of elements and shape vertices are matched. Thus, numerosity estimation around the subitizing range is facilitated by a shape-template matching process.


Subject(s)
Brain/physiology , Evoked Potentials/physiology , Models, Neurological , Pattern Recognition, Visual/physiology , Electrodes , Electroencephalography/instrumentation , Humans , Photic Stimulation/methods , Reaction Time/physiology
6.
Cortex ; 127: 78-93, 2020 06.
Article in English | MEDLINE | ID: mdl-32169678

ABSTRACT

Shape-adaptation studies show that surround textures can inhibit the processing of contours. Using event-related potentials (ERP), we examined the time-course of neural processes involved in contour-shape and texture-shape processing following adaptation to contours and textures. Contours were made of Gabor strings whose orientations were either tangential or orthogonal to the contour path, while textures were made of a series of contours arranged in parallel. We focused on two ERP components -P1, related to low-level visual processes and N1, broadly indicative of mid-level vision- and, on ERP difference waves (no-adaptor minus with-adaptor) to isolate the effects of adaptation, which are fundamentally distinct from individual processes driving P1 and N1 components. We found that in the absence of adaptation, the N1 component for contour-tests peaked later and increased in amplitude compared to the N1 for texture-tests. Following adaptation, the ERP difference wave for contour-tests revealed an early and a late component that were differentially affected by the presence of surround texture, but critically not by its orientation. For texture-tests, the early component was of opposite polarity for contours compared to texture adaptors. From the temporal sequence of ERP modulations, we conclude that texture processing begins before contour processing and encompasses the stages of perceptual processing reflected in both the low-level P1 and the mid-level N1 vision-related components. Our study provides novel evidence on the nature of separable and temporally distinct texture and contour processing mechanisms, shown in two difference wave components, that highlights the multi-faceted nature of dynamic adaptation to shape when presented in isolation and in context.


Subject(s)
Form Perception , Adaptation, Physiological , Orientation , Photic Stimulation , Vision, Ocular
7.
J Vis ; 19(12): 4, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31613953

ABSTRACT

Studies have revealed that textures suppress the processing of the shapes of contours they surround. One manifestation of texture-surround suppression is the reduction in the magnitude of adaptation-induced contour-shape aftereffects when the adaptor contour is surrounded by a texture. Here we utilize this phenomenon to investigate the nature of the first-order inputs to texture-surround suppression of contour shape by examining its selectivity to luminance polarity and the magnitude of luminance contrast. Stimuli were constructed from sinusoidal-shaped strings of either "bright" or "dark" elongated Gaussians. Observers adapted to pairs of contours, and the aftereffect was measured as the shift in the apparent shape frequency of subsequently presented test contours. We found that the suppression of the contour-shape aftereffect by a surround texture made of similar contours was maximal when the adaptor's center and surround contours were of the same polarity, revealing polarity specificity of the surround-suppression effect. We also measured the effect of varying the relative contrasts of the adaptor's center and surround and found that the reduction in the contour-shape aftereffect was determined by the surround-to-center contrast ratio. Finally, we measured the selectivity to luminance polarity of the texture-shape aftereffect itself and found that it was reduced when the adaptors and tests were of opposite luminance polarity. We conclude that texture-surround suppression of contour-shape as well as texture-shape processing itself depend on "on-off" luminance-polarity channel interactions. These selectivities may constitute an important neural substrate underlying efficient figure-ground segregation and image segmentation.


Subject(s)
Contrast Sensitivity/physiology , Form Perception/physiology , Light , Adaptation, Physiological , Figural Aftereffect , Humans , Normal Distribution
8.
Sci Rep ; 9(1): 3431, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30837517

ABSTRACT

The human visual system is often tasked with extracting image properties such as symmetry from rapidly moving objects and scenes. The extent to which motion speed and symmetry processing mechanisms interact is not known. Here we examine speed-tuning properties of symmetry detection mechanisms using dynamic dot-patterns containing varying amounts of position and local motion-direction symmetry. We measured symmetry detection thresholds for stimuli in which symmetric and noise elements either drifted with different relative speeds, were relocated at different relative temporal frequencies or were static. We also measured percentage correct responses under two stimulus conditions: a segregated condition in which symmetric and noise elements drifted at different speeds, and a non-segregated condition in which the symmetric elements drifted at two different speeds in equal proportions, as did the noise elements. We found that performance (i) improved gradually with increasing the difference in relative speed between symmetric and noise elements, but was invariant across relative temporal frequencies/lifetime duration differences between symmetric and noise elements, (ii) was higher in the segregated compared to non-segregated conditions, and in the moving compared to the static conditions. We conclude that symmetry detection mechanisms are broadly tuned to speed, with speed-selective symmetry channels combining their outputs by probability summation.


Subject(s)
Models, Theoretical , Motion Perception , Visual Perception , Humans
9.
J Vis ; 18(5): 10, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29904785

ABSTRACT

Recent studies have suggested that temporal dynamics rather than symmetrical motion-direction contribute to mirror-symmetry perception. Here we investigate temporal aspects of symmetry perception and implicitly, its temporal flexibility and limitations, by examining how symmetrical pattern elements are combined over time. Stimuli were dynamic dot-patterns consisting of either an on-going alternation of two images (sustained stimulus presentation) or just two images each presented once (transient stimulus presentation) containing different amounts of symmetry about the vertical axis. We varied the duration of the two images under five temporal-arrangement conditions: (a) whole patterns in which a symmetric pattern alternated with a noise pattern; (b) delayed halves-the halves of the symmetric and noise patterns were presented with temporal delay; (c) matched-pairs-two alternating images each containing equal amounts of symmetrical matched-pairs; (d) delayed matched-pairs-the same as arrangement (c), but with matched-pairs presented with delay; and (e) static-both images presented simultaneously as one. We found increased sensitivity in sustained compared to transient stimulus presentations and with synchronous compared to delayed matched-pairs stimuli. For the delayed conditions, sensitivity decreased gradually with longer image durations (>60 ms), prominently for the transient stimulus presentations. We conclude that spatial correlations across-the-symmetry-midline can be integrated over time (∼120 ms), and symmetry mechanisms can tolerate temporal delays between symmetric dot-pairs of up to ∼60 ms.


Subject(s)
Visual Perception/physiology , Cerebral Cortex/physiology , Dominance, Cerebral/physiology , Humans , Reaction Time
10.
Neuroimage ; 173: 484-497, 2018 06.
Article in English | MEDLINE | ID: mdl-29427849

ABSTRACT

Electrophysiological studies of symmetry have found a difference wave termed the Sustained Posterior Negativity (SPN) related to the presence of symmetry. Yet the extent to which the SPN is modulated by luminance-polarity and colour content is unknown. Here we examine how luminance-polarity distribution across the symmetry axis, grouping by luminance polarity, and the number of colours in the stimuli, modulate the SPN. Stimuli were dot patterns arranged either symmetrically or quasi-randomly. There were several arrangements: 'segregated'-symmetric dots were of one polarity and randomly-positioned dots were of the other; 'unsegregated'-symmetric dots were of both polarities in equal proportions; 'anti-symmetric'-dots were of opposite polarity across the symmetry axis; 'polarity-grouped anti-symmetric'-this is the same as anti-symmetric but with half the pattern of one polarity and the other half of opposite polarity; multi-colour symmetric patterns made of two, three to four colours. We found that the SPN is: (i) reduced by the amount of position-symmetry, (ii) sensitive to luminance-polarity mismatch across the symmetry axis, and (iii) not modulated by the number of colours in the stimuli. Our results show that the sustained nature of the SPN coincides with the late onset of a topographic microstate sensitive to symmetry. These findings emphasise the importance of not only position symmetry, but also luminance polarity matching across the symmetry axis.


Subject(s)
Brain/physiology , Contrast Sensitivity/physiology , Evoked Potentials/physiology , Pattern Recognition, Visual/physiology , Brain Mapping/methods , Color Perception/physiology , Electroencephalography , Humans , Photic Stimulation , Signal Processing, Computer-Assisted
11.
Sci Rep ; 7: 45679, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28374760

ABSTRACT

The human visual system has specialised mechanisms for encoding mirror-symmetry and for detecting symmetric motion-directions for objects that loom or recede from the observers. The contribution of motion to mirror-symmetry perception has never been investigated. Here we examine symmetry detection thresholds for stationary (static and dynamic flicker) and symmetrically moving patterns (inwards, outwards, random directions) with and without positional symmetry. We also measured motion detection and direction-discrimination thresholds for horizontal (left, right) and symmetrically moving patterns with and without positional symmetry. We found that symmetry detection thresholds were (a) significantly higher for static patterns, but there was no difference between the dynamic flicker and symmetrical motion conditions, and (b) higher than motion detection and direction-discrimination thresholds for horizontal or symmetrical motion, with or without positional symmetry. In addition, symmetrical motion was as easy to detect or discriminate as horizontal motion. We conclude that whilst symmetrical motion per se does not contribute to symmetry perception, limiting the lifetime of pattern elements does improve performance by increasing the number of element-locations as elements move from one location to the next. This may be explained by a temporal integration process in which weak, noisy symmetry signals are combined to produce a stronger signal.


Subject(s)
Motion Perception/physiology , Pattern Recognition, Visual/physiology , Visual Perception/physiology , Discrimination, Psychological/physiology , Humans , Motion , Photic Stimulation/methods , Sensory Thresholds/physiology
12.
Sci Rep ; 7: 43274, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28230085

ABSTRACT

In biological vision, contextual modulation refers to the influence of a surround pattern on either the perception of, or the neural responses to, a target pattern. One studied form of contextual modulation deals with the effect of a surround texture on the perceived shape of a contour, in the context of the phenomenon known as the shape aftereffect. In the shape aftereffect, prolonged viewing, or adaptation to a particular contour's shape causes a shift in the perceived shape of a subsequently viewed contour. Shape aftereffects are suppressed when the adaptor contour is surrounded by a texture of similarly-shaped contours, a surprising result given that the surround contours are all potential adaptors. Here we determine the motion and temporal properties of this form of contextual modulation. We varied the relative motion directions, speeds and temporal phases between the central adaptor contour and the surround texture and measured for each manipulation the degree to which the shape aftereffect was suppressed. Results indicate that contextual modulation of shape processing is selective to motion direction, temporal frequency and temporal phase. These selectivities are consistent with one aim of vision being to segregate contours that define objects from those that form textured surfaces.


Subject(s)
Figural Aftereffect , Form Perception , Motion Perception , Visual Perception , Humans
13.
Sci Rep ; 6: 29287, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27404804

ABSTRACT

The role of color in the visual perception of mirror-symmetry is controversial. Some reports support the existence of color-selective mirror-symmetry channels, others that mirror-symmetry perception is merely sensitive to color-correlations across the symmetry axis. Here we test between the two ideas. Stimuli consisted of colored Gaussian-blobs arranged either mirror-symmetrically or quasi-randomly. We used four arrangements: (1) 'segregated' - symmetric blobs were of one color, random blobs of the other color(s); (2) 'random-segregated' - as above but with the symmetric color randomly selected on each trial; (3) 'non-segregated' - symmetric blobs were of all colors in equal proportions, as were the random blobs; (4) 'anti-symmetric' - symmetric blobs were of opposite-color across the symmetry axis. We found: (a) near-chance levels for the anti-symmetric condition, suggesting that symmetry perception is sensitive to color-correlations across the symmetry axis; (b) similar performance for random-segregated and non-segregated conditions, giving no support to the idea that mirror-symmetry is color selective; (c) highest performance for the color-segregated condition, but only when the observer knew beforehand the symmetry color, suggesting that symmetry detection benefits from color-based attention. We conclude that mirror-symmetry detection mechanisms, while sensitive to color-correlations across the symmetry axis and subject to the benefits of attention-to-color, are not color selective.

14.
Vision Res ; 104: 12-23, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25204771

ABSTRACT

Contextual modulation refers to the effect of texture placed outside of a neuron's classical receptive field as well as the effect of surround texture on the perceptual properties of variegated regions within. In this minireview, we argue that one role of contextual modulation is to enhance the perception of contours at the expense of textures, in short to de-texturize the image. The evidence for this role comes mainly from three sources: psychophysical studies of shape after-effects, computational models of neurons that exhibit iso-orientation surround inhibition, and fMRI studies revealing specialized areas for contour as opposed to texture processing. The relationship between psychophysical studies that support the notion of contextual modulation as de-texturizer and those that investigate contour integration and crowding is discussed.


Subject(s)
Form Perception/physiology , Pattern Recognition, Visual/physiology , Contrast Sensitivity , Figural Aftereffect/physiology , Humans , Models, Theoretical , Psychophysics , Visual Cortex/physiology
15.
Vision Res ; 95: 36-42, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24361603

ABSTRACT

Two sub-systems characterize the early stages of human colour vision, the 'L-M' system that differences L and M cone signals and the 'S' system that differences S cone signals from the sum of L and M cone signals. How do they interact at suprathreshold contrast levels? To address this question we employed the method used by Kingdom et al. (2010) to study suprathreshold interactions between luminance and colour contrast. The stimulus employed in one condition was similar to that used by Regan and Mollon (1997) for studying the relative 'organizing power' of the two sub-systems, and consisted of obliquely-oriented red-cyan (to isolate the L-M sub-system) and violet-chartreuse (to isolate the S sub-system) stripes within a lattice of circles. In our experiment there were two conditions, (1) the Separated condition, in which the L-M and S modulations were of opposite orientation and presented separately as a forced-choice pair, and (2) the Combined condition, in which the L-M and S modulations were added. In the Separated condition the task was to indicate the stimulus with the more salient orientation structure, whereas in the Combined condition the task was to indicate the orientation that was more salient. Psychometric functions were used to estimate the ratio of L-M to S contrast at the 'balance-point' i.e. point-of-subjective-equality (PSE) in both conditions. We found that across 20 subjects an average of 8% more S than L-M contrast was needed to achieve a PSE in the Combined compared to Separated condition. We consider possible reasons for this PSE difference and conclude that it is either due to an early-stage interaction between the S and L-M sub-systems, or to a later stage in which new colours that arise from their combination are selectively grouped.


Subject(s)
Color Perception/physiology , Retinal Cone Photoreceptor Cells/physiology , Humans , Pattern Recognition, Visual/physiology , Photic Stimulation/methods , Psychometrics , Sensory Thresholds/physiology
16.
PLoS One ; 8(8): e73307, 2013.
Article in English | MEDLINE | ID: mdl-24023677

ABSTRACT

Prolonged exposure to an oriented line shifts the perceived orientation of a subsequently observed line in the opposite direction, a phenomenon known as the tilt aftereffect (TAE). Here we consider whether the TAE for line stimuli is mediated by a mechanism that integrates the local parts of the line into a single global entity prior to the site of adaptation, or the result of the sum of local TAEs acting separately on the parts of the line. To test between these two alternatives we used the fact the TAE transfers almost completely across luminance contrast polarity [1]. We measured the TAE using adaptor and test lines that (1) either alternated in luminance polarity or were of a single polarity, and (2) either alternated in local orientation or were of a single orientation. We reasoned that if the TAE was agnostic to luminance polarity and was parts-based, we should obtain large TAEs using alternating-polarity adaptors with single-polarity tests. However we found that (i) TAEs using one-alternating-polarity adaptors with all-white tests were relatively small, increased slightly for two-alternating-polarity adaptors, and were largest with all-white or all-black adaptors. (ii) however TAEs were relatively large when the test was one-alternating polarity, irrespective of the adaptor type. (iii) The results with orientation closely mirrored those obtained with polarity with the difference that the TAE transfer across orthogonal orientations was weak. Taken together, our results demonstrate that the TAE for lines is mediated by a global shape mechanism that integrates the parts of lines into whole prior to the site of orientation adaptation. The asymmetry in the magnitude of TAE depending on whether the alternating-polarity lines was the adaptor or test can be explained by an imbalance in the population of neurons sensitive to 1(st)-and 2(nd)-order lines, with the 2(nd)-order lines being encoded by a subset of the mechanisms sensitive to 1(st)-order lines.


Subject(s)
Adaptation, Ocular/physiology , Figural Aftereffect/physiology , Orientation/physiology , Contrast Sensitivity , Humans , Models, Neurological , Photic Stimulation
17.
Iperception ; 4(1): 36-52, 2013.
Article in English | MEDLINE | ID: mdl-23799186

ABSTRACT

We investigated the role of spatial arrangement of texture elements in three psychophysical experiments on texture discrimination and texture segregation. In our stimuli, oriented Gabor elements formed an iso-oriented and a randomly oriented texture region. We manipulated (1) the orientation similarity in the iso-oriented region by adding orientation jitter to the orientation of each Gabor; (2) the spatial arrangement of the Gabors: quasi-random or regular; and (3) the shape of the edge between the two texture regions: straight or curved. In Experiment 1, participants discriminated an iso-oriented stimulus from a stimulus with only randomly oriented elements. Experiment 2 required texture segregation to judge the shape of the texture edge. Experiment 3 replicated Experiment 2 with Gabors of a smaller spatial extent in a denser arrangement. We found comparable performance levels with regular and quasi-random Gabor positions in the discrimination task but not in the segregation tasks. We conclude that spatial arrangement plays a role in a texture segregation task requiring shape discrimination of the texture edge but not in a texture discrimination task in which it is sufficient to discriminate an iso-oriented region from a completely random region.

18.
J Vis ; 12(6): 16, 2012 Jun 12.
Article in English | MEDLINE | ID: mdl-22693334

ABSTRACT

Contour-shape coding is color selective (Gheorghiu & Kingdom, 2007a) and surround textures inhibit the processing of contour shapes (Gheorghiu & Kingdom, 2011; Kingdom & Prins, 2009). These two findings raise two questions: (1) is texture-surround suppression of contour shape color selective, and (2) is texture-shape processing color selective? To answer these questions, we measured the shape-frequency aftereffect using contours constructed from strings of Gabors defined along the red-green, blue-yellow, and luminance axes of cardinal color space. The stimuli were either single sinusoidal-shaped contours or textures made of sinusoidal-shaped contours arranged in parallel. We measured aftereffects for (A) single-contour adaptors and single-contour tests defined along the same versus different cardinal directions, (B) texture adaptors and single-contour tests in which the central-adaptor contour/single-contour test and surround adaptor contours were defined along the same versus different cardinal directions, and (C) texture adaptors and texture tests defined along same versus different cardinal directions. We found that color selectivity was most prominent for contour-shape processing, weaker for texture-surround suppression of contour-shape processing, and absent for texture-shape processing.


Subject(s)
Color Perception/physiology , Color Vision/physiology , Figural Aftereffect/physiology , Form Perception/physiology , Retina/physiology , Adaptation, Physiological/physiology , Contrast Sensitivity/physiology , Humans , Lighting , Photic Stimulation/methods , Psychophysics/methods , Retinal Cone Photoreceptor Cells/physiology
19.
J Vis ; 12(6): 20, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22707427

ABSTRACT

Evidence that contour-shapes and texture-shapes are processed by different mechanisms included the finding that contour-shape aftereffects are reduced when the adaptation stimulus is a texture made of contours rather than a single contour. This phenomenon has been termed texture-surround suppression of contour-shape, or TSSCS. How does TSSCS operate and over what spatial extent? We measured the postadaptation shift in the apparent shape frequency of a single sinusoidal-shaped contour as a function of the number of contours in the adaptor stimulus. Contours were Gabor strings in which the Gabor orientations were either tangential (snakes) or orthogonal (ladders) to the path of the contour. We found that for extended surrounds, the aftereffect was strongly reduced when the surround contours were the same as the central adaptor contour, but not when the Gabors making up the surround contours were opposite-in-orientation to those of the central adaptor. For near surrounds, the aftereffect in a snake contour was unaffected by same-orientation but strongly suppressed by opposite-orientation surrounds, whereas the aftereffect for a ladder-contour was suppressed equally by both same- and opposite-orientation near surrounds. Finally, the strength of surround suppression decreased gradually with increasing spatial separation between center and surround. These results indicate that there are two components to texture-surround suppression in our shape aftereffect: one that is sensitive to opposite-orientation texture surrounds, operates locally, and disrupts contour-processing; the other that is sensitive to same-orientation texture surrounds, is spatially extended, and prevents the shape of the contour from being processed as a contour. We also demonstrate that the observed shape aftereffects are not due to changes in the apparent shape-frequency of the adaptors or the precision with which their shape-frequency is encoded, indicating that TSSCS is not an instance of crowding.


Subject(s)
Adaptation, Physiological , Figural Aftereffect/physiology , Form Perception/physiology , Contrast Sensitivity , Humans , Orientation , Photic Stimulation/methods
20.
J Vis ; 11(14)2011 Dec 20.
Article in English | MEDLINE | ID: mdl-22186273

ABSTRACT

Studies have shown that spatial aftereffects increase with eccentricity. Here, we demonstrate that the shape-frequency and shape-amplitude aftereffects, which describe the perceived shifts in the shape of a sinusoidal-shaped contour following adaptation to a slightly different sinusoidal-shaped contour, also increase with eccentricity. Why does this happen? We first demonstrate that the perceptual shift increases with eccentricity for stimuli of fixed sizes. These shifts are not attenuated by variations in stimulus size; in fact, at each eccentricity the degree of perceptual shift is scale-independent. This scale independence is specific to the aftereffect because basic discrimination thresholds (in the absence of adaptation) decrease as size increases. Structural aspects of the displays were found to have a modest effect on the degree of perceptual shift; the degree of adaptation depends modestly on distance between stimuli during adaptation and post-adaptation testing. There were similar temporal rates of decline of adaptation across the visual field and higher post-adaptation discrimination thresholds in the periphery than in the center. The observed results are consistent with greater sensitivity reduction in adapted mechanisms following adaptation in the periphery or an eccentricity-dependent increase in the bandwidth of the shape-frequency- and shape-amplitude-selective mechanisms.


Subject(s)
Afterimage/physiology , Discrimination, Psychological/physiology , Form Perception/physiology , Adaptation, Physiological/physiology , Humans , Photic Stimulation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...