Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Clean Technol Environ Policy ; 25(4): 1259-1272, 2023.
Article in English | MEDLINE | ID: mdl-36530649

ABSTRACT

Atmospheric nitrogen oxides ( NO x = NO + NO 2 ) are key pollutants and short-lived climate forcers contributing to acid rain, photochemical smog, aerosol formation and climate change. Exposure to nitrogen dioxide ( NO 2 ) emitted mainly from transportation, causes adverse health effects associated with respiratory illnesses and increased mortality even at low concentration. Application of titanium dioxide ( TiO 2 )-based photocatalysis in urban environment is a new air cleaning solution, activated by sunlight and water vapour to produce OH radicals, able to remove NO x and other pollutants from the planetary boundary layer. This study is a large-scale evaluation of NO x removal efficiency at a near-road environment with applied photocatalytic NOxOFF™ technology on an urban road west of Copenhagen, thus supporting local municipality in meeting their clean-air Agenda 2030. The photocatalytic NOxOFF™ granulate containing TiO 2 nanoparticles was applied on an asphalt road in July 2020 and ambient NO x was measured during a six-month monitoring campaign. It is the first NO x monitoring campaign carried out at this road and specific efforts have been devoted to evaluate the reduction in ambient NO x levels with NOxOFF™-treated asphalt. Several methods were used to evaluate the photocatalytic effect, taking into account analysis limitations such as the short reference period prior to application and the highly uncertain measurement period during which SARS-CoV-2 lockdown measures impacted air quality. There was no statistically significant difference in NO x concentrations between the reference period and the photocatalytic active period and NO removal efficiency resulted in - 0.17 (± 1.27). An upper limit removal of 17.5% NO x was estimated using a kinetic tunnel model. While NO 2 comparison with COPERT V street traffic model projection was roughly estimated to decrease by 39% (± 38%), although this estimate is subject to high uncertainty. The observed annual mean NO 2 concentration complies with Frederiksberg clean-air Agenda 2030 and air quality standards. Graphical abstract: A graphical abstract illustrating the air cleaning properties of TiO 2 -based photocatalytic-treated asphalt.

2.
Environ Res ; 164: 444-451, 2018 07.
Article in English | MEDLINE | ID: mdl-29574254

ABSTRACT

Municipal solid waste incinerators emissions contain pollutants that, despite their low concentration, might adversely affect reproductive health. In the present study, we examined rates of miscarriage and birth defects among women who resided or were employed in the vicinity of a municipal solid waste incinerator plant from 2003 to 2013. In 2009, a progressive shutdown of the old incineration lines and operation of a new line caused considerably higher atmospheric release of polycyclic aromatic hydrocarbons, particularly of dioxins, due to these irregular operating conditions, technological renovation, and increased capacity. We used dioxin emission levels, based on a dispersion model, to define exposure status of the residing population to air pollutants emitted by the waste incinerator. In women who resided in areas characterized by higher emission exposures compared with a referent area, the relative risk (RR) of miscarriage was 1.04 (95% confidence interval (CI) 0.80-1.32) based on 62 cases overall, with little evidence of a dose-response relation. RRs were similarly null for both 2003-2008 and 2010-2013 periods (RR 1.12 (95% CI 0.80-1.53) and 0.98 (95% CI 0.63-1.48), respectively). Concerning birth defects in the offspring of women residing in the exposed area, no evidence of increased risk emerged, since the prevalence ratio at birth was 0.64 (95% CI 0.29-1.26), with comparable results in the 2003-2008 and 2010-2013 period. Corresponding analyses carried out in municipal residents who worked in the exposed area confirmed these findings. We also did not detect abnormally high rates of miscarriage and birth defects in the exposed cohorts in the single year 2009. Overall, these results do not suggest an effect of exposure to the emissions of the municipal solid waste incinerator we investigated on two indicators of reproductive health. However, the limited statistical stability of the estimates and the absence of individual-based information on some potential confounders suggest caution in the interpretation of study findings.


Subject(s)
Air Pollutants , Dioxins , Air Pollutants/adverse effects , Female , Humans , Incineration/standards , Pregnancy , Pregnancy Outcome/epidemiology , Solid Waste
3.
Sci Total Environ ; 610-611: 175-190, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28803195

ABSTRACT

Gaussian dispersion models are widely used to simulate the concentrations and deposition fluxes of pollutants emitted by source areas. Very often, the calculation time limits the number of sources and receptors and the geometry of the sources must be simple and without holes. This paper presents CAREA, a new GIS-based Gaussian model for complex source areas. CAREA was coded in the Python language, and is largely based on a simplified formulation of the very popular and recognized AERMOD model. The model allows users to define in a GIS environment thousands of gridded or scattered receptors and thousands of complex sources with hundreds of vertices and holes. CAREA computes ground level, or near ground level, concentrations and dry deposition fluxes of pollutants. The input/output and the runs of the model can be completely managed in GIS environment (e.g. inside a GIS project). The paper presents the CAREA formulation and its applications to very complex test cases. The tests shows that the processing time are satisfactory and that the definition of sources and receptors and the output retrieval are quite easy in a GIS environment. CAREA and AERMOD are compared using simple and reproducible test cases. The comparison shows that CAREA satisfactorily reproduces AERMOD simulations and is considerably faster than AERMOD.

4.
Environ Health ; 16(1): 91, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28851431

ABSTRACT

BACKGROUND: Epidemiologic studies have raised the possibility that some pesticide compounds induce the neurodegenerative disease amyotrophic lateral sclerosis (ALS), though the available evidence is not entirely consistent. METHODS: We conducted a population-based case-control study in two Italian populations to assess the extent to which residence in the vicinity of agricultural crops associated with the application of neurotoxic pesticides is a risk factor for ALS, using crop acreage in proximity to the residence as an index of exposure. RESULTS: Based on 703 cases and 2737 controls, we computed an ALS odds ratio of 0.92 (95% confidence interval 0.78-1.09) for those in proximity to agricultural land. Results were not substantially different when using alternative exposure categories or when analyzing specific crop types, with the exception of a higher risk related to exposure to citrus orchards and olive groves in Southern Italy, though based on few exposed subjects (N = 89 and 8, respectively). There was little evidence of any dose-response relation between crop proximity and ALS risk, and using long-term residence instead of current residence did not substantially change our estimates. CONCLUSIONS: Though our index of exposure is indirect and subject to considerable misclassification, our results offer little support for the hypothesis that neurotoxic pesticide exposure increases ALS risk.


Subject(s)
Agriculture , Amyotrophic Lateral Sclerosis/epidemiology , Environmental Exposure , Environmental Pollutants/toxicity , Pesticides/toxicity , Residence Characteristics , Aged , Amyotrophic Lateral Sclerosis/chemically induced , Case-Control Studies , Crops, Agricultural/classification , Female , Humans , Incidence , Italy/epidemiology , Male , Middle Aged , Risk Factors
5.
Article in English | MEDLINE | ID: mdl-28569083

ABSTRACT

The aetiology of amyotrophic lateral sclerosis (ALS), a rare and extremely severe neurodegenerative disease, has been associated with magnetic fields exposure. However, evidence for such a relation in the general population is weak, although the previous null results might also be due to exposure misclassification, or a relationship might exist only for selected subgroups. To test such a hypothesis we carried out a population-based case-control study in two Northern and Southern Italy regions, including 703 ALS cases newly diagnosed from 1998 to 2011 and 2737 controls randomly selected from the residents in the study provinces. Overall, we found that a residence near high-voltage power lines, within the corridors yielding a magnetic fields of ≥0.1 µT, was not associated with an excess disease risk, nor did we identify a dose-response relationship after splitting the exposed corridor according to the 0.1, 0.2 and 0.4 µT cut-points of exposure. These results were confirmed taking into account age at onset, period of diagnosis, sex, geographical area, and length of exposure. Overall, despite the residual possibility of unmeasured confounding or small susceptible subgroups not identified in our study, these results appear to confirm that the exposure to magnetic fields from power lines occurring in the general population is not associated with increased ALS risk.


Subject(s)
Amyotrophic Lateral Sclerosis/epidemiology , Electricity , Magnetic Fields , Radiation Exposure/analysis , Radiation Exposure/statistics & numerical data , Radiation Injuries/epidemiology , Age Distribution , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/diagnosis , Female , Humans , Italy/epidemiology , Male , Middle Aged , Prevalence , Radiation Dosage , Risk Factors , Sex Distribution
6.
J Environ Monit ; 14(2): 552-63, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22170095

ABSTRACT

The Po valley in northern Italy is renowned for its high air pollutant concentrations. Measurements of air pollutants from a background site in Modena, a town of 200 thousand inhabitants within the Po valley, are analysed. These comprise hourly data for CO, NO, NO(2), NO(x), and O(3), and daily gravimetric equivalent data for PM(10) from 1998-2010. The data are analysed in terms of long-term trends, annual, weekly and diurnal cycles, and auto-correlation and cross-correlation functions. CO, NO and NO(2) exhibit a strongly traffic-related pattern, with daily peaks at morning and evening rush hour and lower concentrations over the weekend. Ozone shows an annual cycle with a peak in July due to local production; notwithstanding the diurnal cycle dominated by titration by nitrogen oxide, the decreasing long term trend in NO concentration did not affect the long term trend in O(3), whose mean concentration remained steady over the sampling period. PM(10) shows a strong seasonality with higher concentration in winter and lower concentration in summer and spring. Both PM(10) and ozone show a marked weekly cycle in summer and winter respectively. Regressions of PM(10) upon NO(x) show a consistently greater intercept in winter, representing higher secondary PM(10) in the cooler months of the year. There is a seasonal pattern in primary PM(10) to NO(x) ratios, with lower values in winter and higher values in summer, but the reasons are unclear.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Air Pollutants/standards , Air Pollution/statistics & numerical data , Carbon Monoxide/analysis , Climate , Italy , Nitrogen Oxides/analysis , Ozone/analysis , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...