Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 18(7): 2540-2555, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34106726

ABSTRACT

Dendritic cells serve as the main immune cells that trigger the immune response. We developed a simple and cost-effective nanovaccine platform based on the α1',2-mannobiose derivative for dendritic cell targeting. In previous work, we have formulated the α1,2-mannobiose-based nanovaccine platform with plasmid DNA and tested it in cattle against BoHV-1 infection. There, we have shown that the dendritic cell targeting using this nanovaccine platform in vivo can boost the immunogenicity, resulting in a long-lasting immunity. In this work, we aim to characterize the α1',2-mannobiose derivative, which is key in the nanovaccine platform. This DC-targeting strategy takes advantage of the specific receptor known as DC-SIGN and exploits its capacity to bind α1,2-mannobiose that is present at terminal ends of oligosaccharides in certain viruses, bacteria, and other pathogens. The oxidative conjugation of α1',2-mannobiose to NH2-PEG2kDa-DSPE allowed us to preserve the chemical structure of the non-reducing mannose of the disaccharide and the OH groups and the stereochemistry of all carbons of the reducing mannose involved in the binding to DC-SIGN. Here, we show specific targeting to DC-SIGN of decorated micelles incubated with the Raji/DC-SIGN cell line and uptake of targeted liposomes that took place in human, bovine, mouse, and teleost fish DCs in vitro, by flow cytometry. Specific targeting was found in all cultures, demonstrating a species-non-specific avidity for this ligand, which opens up the possibility of using this nanoplatform to develop new vaccines for various species, including humans.


Subject(s)
Antigen-Presenting Cells/immunology , Cell Adhesion Molecules/immunology , Dendritic Cells/immunology , Lectins, C-Type/immunology , Lymphoma/immunology , Mannose/chemistry , Receptors, Cell Surface/immunology , Vaccines/immunology , Animals , Cattle , Female , Fishes , Humans , Lymphoma/therapy , Male , Mice , Mice, Inbred BALB C , Species Specificity , Vaccines/administration & dosage
2.
J Endocrinol ; 234(3): 269-278, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28676525

ABSTRACT

Endometriosis is an inflammatory disease depending on estradiol, with TNF-α being one of the most representative cytokines involved in its pathogenesis. TNF-α acts through its bond to the TNFRp55 and TNFRp75 membrane receptors. The aim of this study was to analyze the effect of the TNFRp55 deficiency on the development of ectopic endometriotic-like lesions. Endometriosis was induced surgically in mice of the C57BL/6 strain, wild type (WT) and TNFRp55-/- (KO). After four weeks, the peritoneal fluid was collected and the lesions were counted, measured with a caliper, removed, weighed, fixed or kept at -80°C. We evaluated the cell proliferation by proliferating cell nuclear antigen (PCNA) immunohistochemistry and apoptosis by TUNEL technique in the ectopic lesions. MMP-2 and MMP-9 activities (factors involved in invasiveness) were measured by zymography in the peritoneal fluid; estradiol and progesterone levels were measured by radioimmunoassay in the lesions and in the peritoneal fluid. We found that in KO animals the mean number of lesions established per mouse, the lesion volume, weight and cell proliferation increased and apoptosis decreased. In addition, the activity of MMP-2 and the estradiol level increased, whereas the progesterone level was not significantly modified. In conclusion, the deficiency of TNFRp55 promoted the establishment and development of endometriosis through an increase in the lesion size and high levels of estradiol which correlate with an increase in the MMP-2 activity. This is evidence of the possible association of the deregulation of the TNFRp55 expression and the survival of the endometriotic tissue in ectopic sites.


Subject(s)
Endometriosis/metabolism , Endometrium/growth & development , Receptors, Tumor Necrosis Factor, Type I/deficiency , Tumor Necrosis Factor Decoy Receptors/deficiency , Animals , Cell Proliferation , Disease Models, Animal , Endometriosis/genetics , Endometriosis/pathology , Endometriosis/physiopathology , Endometrium/metabolism , Endometrium/pathology , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Tumor Necrosis Factor Decoy Receptors/genetics
3.
Exp Physiol ; 100(8): 935-46, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26084725

ABSTRACT

NEW FINDINGS: What is the central question of this study? The processes involved in luteal involution have not yet been clarified and, in general, have been studied only from a hormonal point of view. We investigated whether progesterone, from the coeliac ganglion through the superior ovarian nerve, is able to modify the luteal regression of late pregnancy in the rat. What is the main finding and its importance? We showed that the luteal regression might be reversed by the neural effect of progesterone and demonstrated the presence of its receptors in the coeliac ganglion. This suggests that the peripheral neural pathway, through neuron-hormone interaction, represents an additional mechanism to control luteal function in addition to the classical endocrine regulation. The corpus luteum (CL) is a transitory endocrine gland that produces progesterone (P). At the end of its useful life, it suffers a process of functional and structural regression until its complete disappearance from the ovary. To investigate whether P is able to regulate the process of luteal regression through the peripheral neural pathway, we used the coeliac ganglion (CG)-superior ovarian nerve-ovary system from rats on day 21 of pregnancy. We stimulated the CG with P and analysed the functional regression through ovarian P release measured by radioimmunoassay, expression by RT-PCR and activity of luteal 3ß- and 20α-hydroxysteroid dehydrogenase (anabolic and catabolic P enzymes, respectively). The luteal structural regression was evaluated through a study of apoptosis measured by TUNEL assay and the expression of apoptotic factors, such as Bcl-2, Bax, Fas and Fas ligand (FasL) by RT-PCR. To explore whether the effects mediated by P on the CL may be associated with P receptors, their presence in the CG was investigated by immunohistochemistry. In the group stimulated with P in the CG, the ovarian P release and the 3ß-hydroxysteroid dehydrogenase activity increased, whereas the expression and activity of 20α-hydroxysteroid dehydrogenase decreased. In addition, a decrease in the number of apoptotic nuclei and a decrease of the expression of FasL were observed. We demonstrated the presence of P receptors in the CG. Overall, our results suggest that the regression of the CL of late pregnancy may be reprogrammed through the peripheral neural pathway, and this effect might be mediated by P bound to its receptor in the CG.


Subject(s)
Corpus Luteum/physiology , Ganglia, Sympathetic/physiology , Luteolysis/physiology , Neurotransmitter Agents/pharmacology , Progesterone/pharmacology , Receptors, Progesterone/physiology , Animals , Corpus Luteum/drug effects , Female , Ganglia, Sympathetic/drug effects , Luteolysis/drug effects , Neurotransmitter Agents/physiology , Organ Culture Techniques , Ovary/drug effects , Ovary/physiology , Pregnancy , Progesterone/physiology , Rats , Rats, Sprague-Dawley , Receptors, Progesterone/agonists
SELECTION OF CITATIONS
SEARCH DETAIL
...