Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Genet ; 103(5): 560-565, 2023 05.
Article in English | MEDLINE | ID: mdl-36453701

ABSTRACT

Hydrops fetalis is a rare disorder associated with significant perinatal complications and a high perinatal mortality of at least 50%. Nonimmune hydrops fetalis (NIHF) is more frequent and results from a wide variety of etiologies. One cause of NIHF is lymphatic malformation 6 (LMPHM6) due to biallelic loss-of-function (LoF) variants in PIEZO1. Most individuals are diagnosed postnatally and only few clinical data are available on fetal presentations. We report six novel biallelic predicted LoF variants in PIEZO1 identified by exome sequencing in six fetuses and one deceased neonate from four unrelated families affected with LMPHM6. During the pregnancy, most cases are revealed by isolated NIHF at second trimester of gestation. At post-mortem examination ascites, pleural effusions and telengectasies can guide the etiological diagnosis. We aim to further describe the perinatal presentation of this condition which could be underdiagnosed.


Subject(s)
Hydrops Fetalis , Prenatal Diagnosis , Pregnancy , Infant, Newborn , Female , Humans , Hydrops Fetalis/diagnosis , Hydrops Fetalis/genetics , Fetus , Ion Channels/genetics
2.
Clin Genet ; 102(6): 543-547, 2022 12.
Article in English | MEDLINE | ID: mdl-36031591

ABSTRACT

Dehydrated hereditary stomatocytosis (DHS) (MIM#194380) is a rare autosomal dominant disorder of red blood cell permeability, characterized by a partially or fully compensated nonimmune hemolytic anemia. PIEZO1 is the major gene involved with hundreds of families described, some of which present transient perinatal edema of varying severity. A smaller subset of individuals harbors pathogenic variants in KCNN4, sometimes referred as "Gardos channelopathy." Up to now, only six pathogenic variants in KCNN4 have been reported in 13 unrelated families. Unlike PIEZO1-DHS, neither perinatal edema nor fetal loss has ever been observed linked to KCNN4-DHS. We report the first fetal loss due to non-immune hydrops fetalis related to a pathogenic 28 bp deletion (NM_002250.2: c.1109_1119+17del) in KCNN4. This observation underlies the need for very close monitoring of pregnancies when one parent is affected by DHS regardless of genotype (PIEZO1 or KCNN4).


Subject(s)
Anemia, Hemolytic, Congenital , Channelopathies , Pregnancy , Female , Humans , Hydrops Fetalis/genetics , Anemia, Hemolytic, Congenital/complications , Anemia, Hemolytic, Congenital/genetics , Channelopathies/complications , Ion Channels/genetics , Edema/complications
3.
Clin Genet ; 100(4): 462-467, 2021 10.
Article in English | MEDLINE | ID: mdl-34212369

ABSTRACT

Hydrolethalus syndrome (HLS) is a rare lethal fetal malformation disorder related to ciliogenesis disruption. This condition is more frequent in Finland where a founder missense variant in the HYLS1 gene was identified. No other HYLS1 variant has hitherto been implicated in HLS. We report two unrelated French fetuses presenting with a phenotype of HLS with brain abnormalities, limbs malformations with pre and postaxial hexadactyly and abnormal genitalia. These two fetuses have compound heterozygous variants in HYLS1. The first allele carries the same Finnish missense variant (NM_145014.2: c.632A > G, p.[Asp211Gly]) in both fetuses and the second allele carries a new missense variant (c.662G > C, p.[Arg221Pro]) in the first fetus, and a new nonsense variant (c.613C > T, p.[Arg205*]) in the second fetus. This is the first report of HYLS1 mutated cases outside Finland. Both cases presented here are consistent with HLS with additional malformations, allowing expansion of the phenotypic presentation previously described.


Subject(s)
Genetic Predisposition to Disease , Genetic Variation , Hand Deformities, Congenital/diagnosis , Hand Deformities, Congenital/genetics , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Hydrocephalus/diagnosis , Hydrocephalus/genetics , Phenotype , Proteins/genetics , Alleles , Amino Acid Substitution , Autopsy , Comparative Genomic Hybridization , Female , Fetus , Genetic Association Studies , Genotype , Humans , Immunohistochemistry , Pedigree , Pregnancy , Ultrasonography, Prenatal
4.
Neurogenetics ; 22(3): 195-206, 2021 07.
Article in English | MEDLINE | ID: mdl-34132911

ABSTRACT

Microarray-based comparative genomic hybridization (aCGH) is being increasingly applied to delineate novel genomic disorders and related syndromes in patients with developmental delay. In this study, detailed clinical and cytogenetic data of three unrelated patients with interstitial 2q12.3q13 microdeletion were described and compared with thirteen 2q12.3q13 microdeletion patients, gathered from the medical literature and public databases. 60 K aCGH analysis revealed three overlapping 2q12.3q13 microdeletions measuring 1.88 Mb in patient 1, 1.25 Mb in patient 2, and 0.41 Mb in patient 3, respectively. Confirmation and segregation studies were performed using fluorescence in situ hybridization (FISH) and quantitative real-time PCR. Variable clinical features of 2q12.3q13 microdeletion including microcephaly, prenatal growth retardation, developmental delay, short stature, behavioral problems, learning difficulties, skeletal anomalies, congenital heart defects, and features of ectodermal dysplasia were observed. The boundaries and sizes of the 2q12.3q13 deletions in the sixteen patients were different, but an overlapping region of 249 kb in 2q12.3 was defined. The SRO (smallest region of overlap) encompasses four genes, including LIMS1, RANBP2, CCDC138, and EDAR. Among these genes, RANBP2 is a strong candidate gene for neurological phenotype and genetic susceptibility to viral infections. To our knowledge, this is the first published report of 2q12.3q13 microdeletion syndrome and our observations strongly suggest that these recurrent CNVs may be a novel risk factor for developmental delay with variable expressivity and incomplete penetrance.


Subject(s)
Abnormalities, Multiple/genetics , Problem Behavior , Chromosome Deletion , Chromosomes, Human, Pair 3/genetics , Comparative Genomic Hybridization/methods , Female , Genomics/methods , Genotype , Humans , Phenotype , Pregnancy
5.
Hum Mutat ; 42(5): 498-505, 2021 05.
Article in English | MEDLINE | ID: mdl-33600053

ABSTRACT

ARHGEF9 defects lead to an X-linked intellectual disability disorder related to inhibitory synaptic dysfunction. This condition is more frequent in males, with a few affected females reported. Up to now, sequence variants and gross deletions have been identified in males, while only chromosomal aberrations have been reported in affected females who showed a skewed pattern of X-chromosome inactivation (XCI), suggesting an X-linked recessive (XLR) disorder. We report three novel loss-of-function (LoF) variants in ARHGEF9: A de novo synonymous variant affecting splicing (NM_015185.2: c.1056G>A, p.(Lys352=)) in one female; a nonsense variant in another female (c.865C>T, p.(Arg289*)), that is, also present as a somatically mosaic variant in her father, and a de novo nonsense variant in a boy (c.899G>A; p.(Trp300*)). Both females showed a random XCI. Thus, we suggest that missense variants are responsible for an XLR disorder affecting males and that LoF variants, mainly occurring de novo, may be responsible for an X-linked dominant disorder affecting males and females.


Subject(s)
Intellectual Disability , Codon, Nonsense , Female , Genes, X-Linked , Humans , Intellectual Disability/genetics , Male , Mutation, Missense , Rho Guanine Nucleotide Exchange Factors/genetics , X Chromosome Inactivation
6.
Am J Med Genet A ; 179(7): 1390-1394, 2019 07.
Article in English | MEDLINE | ID: mdl-30957429

ABSTRACT

Treacher Collins syndrome (TCS) is a frequent cause of mandibulofacial dysostosis. To date, TCS-causing mutations in three genes, namely TCOF1, POLR1D, and POLR1C have been identified. TCS is usually inherited in an autosomal dominant manner, with a high clinical variability and no phenotype-genotype correlation. Up-to now, five families have been reported with an autosomal recessive mode of inheritance due to mutations in POLR1D or POLR1C. We report here a new family with two sisters affected by mild TCS carrying compound POLR1C heterozygous mutations, and review the literature on mild forms of TCS, autosomal recessive inheritance in this syndrome and POLR1C mutations.


Subject(s)
DNA-Directed RNA Polymerases/genetics , Genes, Recessive , Mandibulofacial Dysostosis/genetics , Mutation , Child, Preschool , Female , Humans , Magnetic Resonance Imaging , Mandibulofacial Dysostosis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...