Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroeng Rehabil ; 14(1): 64, 2017 06 28.
Article in English | MEDLINE | ID: mdl-28659156

ABSTRACT

BACKGROUND: We examined the validity and reliability of a short robotic test of upper limb proprioception, the Arm Movement Detection (AMD) test, which yields a ratio-scaled, objective outcome measure to be used for evaluating the impact of sensory deficits on impairments of motor control, motor adaptation and functional recovery in stroke survivors. METHODS: Subjects grasped the handle of a horizontal planar robot, with their arm and the robot hidden from view. The robot applied graded force perturbations, which produced small displacements of the handle. The AMD test required subjects to respond verbally to queries regarding whether or not they detected arm motions. Each participant completed ten, 60s trials; in five of the trials, force perturbations were increased in small increments until the participant detected motion while in the others, perturbations were decreased until the participant could no longer detect motion. The mean and standard deviation of the 10 movement detection thresholds were used to compute a Proprioceptive Acuity Score (PAS). Based on the sensitivity and consistency of the estimated thresholds, the PAS quantifies the likelihood that proprioception is intact. Lower PAS scores correspond to higher proprioceptive acuity. Thirty-nine participants completed the AMD test, consisting of 25 neurologically intact control participants (NIC), seven survivors of stroke with intact proprioception in the more affected limb (HSS+P), and seven survivors of stroke with impaired or absent proprioception in the more affected limb (HSS-P). RESULTS: Significant group differences were found, with the NIC and HSS+P groups having lower (i.e., better) PAS scores than the HSS-P group. A subset of the participants completed the AMD test multiple times and the AMD test was found to be reliable across repetitions. CONCLUSIONS: The AMD test required less than 15 min to complete and provided an objective, ratio-scaled measure of proprioceptive acuity in the upper limb. In the future, this test could be utilized to evaluate the contributions of sensory deficits to motor recovery following stroke.


Subject(s)
Arm/physiology , Movement , Proprioception , Robotics/methods , Adult , Aged , Algorithms , Female , Humans , Male , Middle Aged , Psychomotor Performance , Recovery of Function , Reproducibility of Results , Stroke Rehabilitation/methods , Survivors
2.
Ann Neurol ; 59(1): 53-9, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16261565

ABSTRACT

Motor sequence learning is abnormal in presymptomatic Huntington's disease (p-HD). The neural substrates underlying this early manifestation of HD are poorly understood. To study the mechanism of this cognitive abnormality in p-HD, we used positron emission tomography to record brain activity during motor sequence learning in these subjects. Eleven p-HD subjects (age, 45.8 +/- 11.0 years; CAG repeat length, 41.6 +/- 1.8) and 11 age-matched control subjects (age, 45.3 +/- 13.4 years) underwent H(2) (15)O positron emission tomography while performing a set of kinematically controlled motor sequence learning and execution tasks. Differences in regional brain activation responses between groups and conditions were assessed. In addition, we identified discrete regions in which learning-related activity correlated with performance. We found that sequence learning was impaired in p-HD subjects despite normal motor performance. In p-HD, activation responses during learning were abnormally increased in the left mediodorsal thalamus and orbitofrontal cortex (OFC; BA 11/47). Impaired learning performance in these subjects was associated with increased activation responses in the precuneus (BA 18/31). These data suggest that enhanced activation of thalamocortical pathways during motor learning can compensate for caudate degeneration in p-HD. Nonetheless, this mechanism may not be sufficient to sustain a normal level of task performance, even during the presymptomatic stage of the disease.


Subject(s)
Huntington Disease/physiopathology , Learning/physiology , Motor Activity/physiology , Psychomotor Performance/physiology , Adult , Female , Humans , Huntington Disease/genetics , Huntington Disease/pathology , Male , Middle Aged , Positron-Emission Tomography
SELECTION OF CITATIONS
SEARCH DETAIL
...