Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 13(1): 22799, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38129457

ABSTRACT

Anthropogenic underwater noise is an emergent pollutant. Despite several worldwide monitoring programs, only few data are available for the Mediterranean Sea, one of the global biodiversity hotspots. The results of the first continuous acoustic programme run at a transnational basin scale in the Mediterranean Sea are here presented. Recordings were done from March 2020 to June 2021, including the COVID-19 lockdown, at nine stations in the Northern Adriatic Sea. Spatial-temporal variations of the underwater sound are described, having one third octave band sound pressure levels (SPLs) from 10 Hz to 20 kHz as metrics. Higher and more variable SPLs, mainly related to vessel traffic, were found close to harbours, whereas Natura 2000 stations experienced lower SPLs. Lower values were recorded during the lockdown in five stations. Median yearly SPLs ranged between 64 and 95 as well as 70 and 100 dB re 1 µPa for 63 and 125 Hz bands, respectively. These values are comparable with those previously found in busy shallow EU basins but higher levels are expected during a business-as-usual period. This is a baseline assessment for a highly impacted and environmental valuable area, that needs to be managed in a new sustainable blue growth strategy.

4.
Sci Data ; 10(1): 137, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36922529

ABSTRACT

The protection of marine habitats from human-generated underwater noise is an emerging challenge. Baseline information on sound levels, however, is poorly available, especially in the Mediterranean Sea. To bridge this knowledge gap, the SOUNDSCAPE project ran a basin-scale, cross-national, long-term underwater monitoring in the Northern Adriatic Sea. A network of nine monitoring stations, characterized by different natural conditions and anthropogenic pressures, ensured acoustic data collection from March 2020 to June 2021, including the full lockdown period related to the COVID-19 pandemic. Calibrated stationary recorders featured with an omnidirectional Neptune Sonar D60 Hydrophone recorded continuously 24 h a day (48 kHz sampling rate, 16 bit resolution). Data were analysed to Sound Pressure Levels (SPLs) with a specially developed and validated processing app. Here, we release the dataset composed of 20 and 60 seconds averaged SPLs (one-third octave, base 10) output files and a Python script to postprocess them. This dataset represents a benchmark for scientists and policymakers addressing the risk of noise impacts on marine fauna in the Mediterranean Sea and worldwide.

5.
Environ Sci Pollut Res Int ; 25(34): 34306-34318, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30293103

ABSTRACT

Microbiological impact is critical in coastal areas where tourism is particularly important for both the local and regional economy. Submarine outfalls are commonly used to enhance the dispersion of treated sewage thus avoiding pollution along the coast. The Venice lagoon (North Italy) has a very sensitive ecosystem, due to the morphological and natural characteristics of the basin and the co-existence of human activities. To preserve the lagoon, the discharge from the treatment plant for urban wastewater collected from the Venezia-Mestre agglomeration, neighbouring areas and local industries (total of 400,000 population equivalent-PE) has been moved from the lagoon to the open Adriatic Sea since November 2013 by means of an approximately 20-km pipeline. Microbiological pollution inside the lagoon can affect shellfish breeding areas instead, along the coast it affects the quality of bathing waters. In this study, and for the first time, a 3D hydrodynamic SHYFEM model (shallow water finite element model) with high spatial resolution coupled with a microbiological module has been applied to the lagoon and to the Adriatic Sea, to evaluate the effectiveness of the location of the submarine outfall. Microbiological data have been produced by the control Authority according to official analytic methods and by the plant operator. The module of survival of free Escherichia coli follows a variable rate in dependence of UV radiation, temperature and salinity in the water. Two scenarios were modelled: final discharge into the lagoon before November 2013 and after into the open sea. In the latter case, two situations have been considered, one with "Bora" and the other with "Scirocco" winds. Our results indicate that the model correctly simulates microbiological decay and dispersion. The transferral of the final discharge point far from the shoreline improves pollution dispersion, thus preserving the lagoon without evidence of impacts on the bathing waters in all meteorological conditions.


Subject(s)
Decision Support Techniques , Waste Disposal Facilities , Wastewater/microbiology , Animals , Crustacea/physiology , Ecosystem , Environmental Monitoring , Escherichia coli , Hydrodynamics , Italy , Salinity , Seawater/microbiology , Temperature , Ultraviolet Rays , Waste Disposal, Fluid , Water Microbiology , Wind
6.
Sci Total Environ ; 645: 419-430, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30029120

ABSTRACT

A crucial aspect in climate change is to understand how an ecosystem will adapt under different environmental conditions and how it will influence the ecological resources and the connected human activities. In this study, a numerical model reproduces the growth dynamics, dispersion and settlement of clam's larvae in the Venice lagoon. On the basis of the last IPCC scenarios for the years 2050 and 2100, the model simulates the changes in larval settlement, showing how the geographical distribution and, consequently, the nursery area changes over time. Our results indicate that climate change will modify, not only the timing of the settlements (from spring-summer to winter autumn) and the spatial distribution of nursery areas (from central to southern lagoon), but also the absolute quantity of settled larvae in the lagoon. This can strongly affect aquaculture in terms of availability of seed and farming practice. Given that these changes are due to the variations in temperature and circulation, similar processes are likely to happen in other transitional environments all over the world affecting the global aquaculture resources. In this regard, the tool we developed could support local policymakers in the knowledge-based planning and sustainable management of clam aquaculture in vulnerable environments.


Subject(s)
Bivalvia/physiology , Climate Change , Ecosystem , Introduced Species , Natural Resources , Animals , Aquaculture/methods
7.
Sci Total Environ ; 609: 1627-1639, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28810514

ABSTRACT

This research presents a set of multi-objective spatial tools for sea planning and environmental management in the Adriatic Sea Basin. The tools address four objectives: 1) assessment of cumulative impacts from anthropogenic sea uses on environmental components of marine areas; 2) analysis of sea use conflicts; 3) 3-D hydrodynamic modelling of nutrient dispersion (nitrogen and phosphorus) from riverine sources in the Adriatic Sea Basin and 4) marine ecosystem services capacity assessment from seabed habitats based on an ES matrix approach. Geospatial modelling results were illustrated, analysed and compared on country level and for three biogeographic subdivisions, Northern-Central-Southern Adriatic Sea. The paper discusses model results for their spatial implications, relevance for sea planning, limitations and concludes with an outlook towards the need for more integrated, multi-functional tools development for sea planning.

8.
Environ Sci Pollut Res Int ; 23(13): 12515-34, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26408109

ABSTRACT

The Taranto basin is a shallow water marine system in the South of Italy characterized by the presence of a lagoon environment together with a semi-enclosed bay connected to the Ionian Sea. This marine system experienced over the last few decades strong biochemical pollution and environmental degradation, and it is considered a hotspot study site for economic, ecological and scientific reasons. The aim of this study was to examine, on an annual temporal scale and with high spatial resolution, the main hydrodynamical processes and transport scales of the system by means of a 3D finite element numerical model application, adopting the most realistic forcing available. The model allowed us to assess the role played by baroclinic terms in the basin circulation, describing its estuarine nature. In particular, the main features of water circulation, salinity and temperature distribution, water renewal time and bottom stress were investigated. Our results allowed us to equate this system dynamic to that of a weakly stratified estuary, identifying the main driving sources of this mechanism. The vertical stratification over the whole year was proved to be stable, leading to a dual circulation flowing out on the surface, mainly through Porta Napoli channel, and inflowing on the bottom mainly through Navigabile channel. This process was responsible also for the renewal time faster on the bottom of the Mar Piccolo basin than the surface. Due to the great importance of the Taranto basin for what concerns sediment pollution, also the effect of currents in terms of bottom stress was investigated, leading to the conclusion that only in the inlets area the values of bottom stress can be high enough to cause erosion.


Subject(s)
Environmental Monitoring , Seawater/chemistry , Ecosystem , Geologic Sediments/chemistry , Italy , Models, Theoretical , Oceans and Seas , Salinity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...