Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(9): 3738-3760, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36808900

ABSTRACT

A new methodology based on an adaptive grid algorithm followed by an analysis of the ground state from the fit parameters is presented to analyze and interpret experimental XAS L2,3-edge data. The fitting method is tested first in a series of multiplet calculations for d0-d7 systems and for which the solution is known. In most cases, the algorithm is able to find the solution, except for a mixed-spin Co2+ Oh complex, where it instead revealed a correlation between the crystal field and the electron repulsion parameters near spin-crossover transition points. Furthermore, the results for the fitting of previously published experimental data sets on CaO, CaF2, MnO, LiMnO2, and Mn2O3 are presented and their solution discussed. The presented methodology has allowed the evaluation of the Jahn-Teller distortion in LiMnO2, which is consistent with the observed implications in the development of batteries, which use this material. Moreover, a follow-up analysis of the ground state in Mn2O3 has demonstrated an unusual ground state for the highly distorted site which would be impossible to optimize in a perfect octahedral environment. Ultimately, the presented methodology can be used in the analysis of X-ray absorption spectroscopy data measured at the L2,3-edge for a large number of materials and molecular complexes of first-row transition metals and can be expanded to the analysis of other X-ray spectroscopic data in future studies.

2.
ChemCatChem ; 11(3): 1039-1044, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-31007776

ABSTRACT

An in-situ laboratory-based X-ray Absorption Near Edge Structure (XANES) Spectroscopy set-up is presented, which allows performing long-term experiments on a solid catalyst at relevant reaction conditions of temperature and pressure. Complementary to research performed at synchrotron radiation facilities the approach is showcased for a Co/TiO2 Fischer-Tropsch Synthesis (FTS) catalyst. Supported cobalt metal nanoparticles next to a (very small) fraction of cobalt(II) titanate, which is an inactive phase for FTS, were detected, with no signs of re-oxidation of the supported cobalt metal nanoparticles during FTS at 523 K, 5 bar and 200 h, indicating that cobalt metal is maintained as the main active phase during FTS.

3.
J Phys Chem C Nanomater Interfaces ; 121(45): 24919-24928, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29170686

ABSTRACT

We show that with 2p3d resonant inelastic X-ray scattering (RIXS) we can accurately determine the charge-transfer parameters of CoF2, CoCl2, CoBr2, and CoS. The 160 meV resolution RIXS results are compared with charge-transfer multiplet calculations. The improved resolution and the direct observation of the crystal field and charge-transfer excitations allow the determination of more accurate parameters than could be derived from X-ray absorption and X-ray photoemission, both limited in resolution by their lifetime broadening. We derive the crystal field and charge-transfer parameters of the Co2+ ions, which provides the nature of the ground state of the Co2+ ions with respect to symmetry and hybridization. In addition, the increased spectral resolution allows the more accurate determination of the atomic Slater integrals. The results show that the crystal field energy decreases with increasing ligand covalency. The L2 edge RIXS spectra show that the intensity of the (Coster-Kronig induced) nonresonant X-ray emission is a measure of ligand covalency.

SELECTION OF CITATIONS
SEARCH DETAIL
...