Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 149: 110650, 2021 11.
Article in English | MEDLINE | ID: mdl-34600652

ABSTRACT

The aim of this work was to evaluate the suitability of incorporating Fe3O4 (magnetite, M) NPs into water kefir (wKef) beverages. Magnetite NPs were synthesized and coated with pectins (cM), and incorporated into wKef beverages obtained by fermentation of a muscovado sugar solution with wKef grains. FeSO4, usually employed as fortifier, was used as a control. Four different beverages were analyzed: wKef, wKef-cM, wKef-M, wKef-FeSO4, indicating wKef beverages fortified with cM, M or FeSO4, respectively. Their stability was assessed by determining the viability of total lactic acid bacteria and yeasts, and the composition of saccharides along storage at 4 °C for up to 30 days. The toxicity of M and cM was evaluated in an in vivo model of Artemia salina. The absorption of iron was quantified by determining ferritin values on intestinal Caco-2/TC7 cells, and its internalization mechanisms, by employing inhibitors of endocytic pathways and quantifying ferritin. M and cM were non-toxic on Artemia salina up to 500 µg/mL, a toxicity even lower than that of FeSO4, which showed a LD50 of 304.08 µg/mL. After 30 days of storage, no significant decrease on yeasts viability was observed, and bacteria viability was above 6 log CFU/mL for the four beverages. In turn, sucrose decreased to undetectable values, concomitantly to an increase in the concentrations of glucose and fructose. Both wKef-M and wKef-cM led to a significant increase in the ferritin values (up to 2 folds) with regard to the basal state. The internalization of M NPs occurred via clathrins and caveolin pathways, whereas that of cM, by macropinocytosis. Safely incorporating M and cM NPs into wKef beverages appear as an innovative strategy for providing bioavailable iron aiming to ameliorate the nutritional status of populations at risk of iron deficiency (e.g., vegans).


Subject(s)
Kefir , Magnetite Nanoparticles , Caco-2 Cells , Humans , Iron , Water
2.
Colloids Surf B Biointerfaces ; 170: 538-543, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29975901

ABSTRACT

Iron deficiency is the most common nutritional deficit worldwide. The goal of this work was to obtain iron-pectin beads by ionic gelation and evaluate their physiological behavior to support their potential application in the food industry. The beads were firstly analyzed by scanning electronic microscopy, and then physical-chemically characterized by performing swelling, thermogravimetric, porosimetry, Mössbauer spectroscopy and X-ray fluorescence analyses, as well as by determining the particle size. Then, physiological assays were carried out by exposing the beads to simulated gastric and intestinal environments, and determining the iron absorption and transepithelial transport into Caco-2/TC7 cells. Iron-pectin beads were spherical (diameter 1-2 mm), with high density (1.29 g/mL) and porosity (93.28%) at low pressure, indicating their high permeability even when exposed to low pressure. Swelling in simulated intestinal medium (pH 8) was higher than in simulated gastric medium. The source of iron [FeSO4 (control) or iron-pectin beads] did not have any significant effect on the mineral absorption. Regarding transport, the iron added to the apical pole of Caco-2/TC7 monolayers was recovered in the basal compartment, and this was proportional with the exposure time. After 4 h of incubation, the transport of iron arising from the beads was significantly higher than that of the iron from the control (FeSO4). For this reason, iron-pectin beads appear as an interesting system to overcome the low efficiency of iron transport, being a potential strategy to enrich food products with iron, without altering the sensory properties.


Subject(s)
Drug Delivery Systems , Intestines/cytology , Iron/administration & dosage , Iron/metabolism , Pectins/chemistry , Caco-2 Cells , Humans , Iron/chemistry , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...