Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 15826, 2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30361505

ABSTRACT

We report significant photoelectrochemical activity of Y-doped BiFeO3 (Y-BFO) epitaxial thin films deposited on Nb:SrTiO3 substrates. The Y-BFO photoanodes exhibit a strong dependence of the photocurrent values on the thickness of the films, and implicitly on the induced epitaxial strain. The peculiar crystalline structure of the Y-BFO thin films and the structural changes after the PEC experiments have been revealed by high resolution X-ray diffraction and transmission electron microscopy investigations. The crystalline coherence breaking due to the small ionic radius Y-addition was analyzed using Willliamson-Hall approach on the 2θ-ω scans of the symmetric (00 l) reflections and confirmed by high resolution TEM (HR-TEM) analysis. In the thinnest sample the lateral coherence length (L∥) is preserved on larger nanoregions/nanodomains. For higher thickness values L∥ is decreasing while domains tilt angles (αtilt) is increasing. The photocurrent value obtained for the thinnest sample was as high as Jph = 0.72 mA/cm2, at 1.4 V(vs. RHE). The potentiostatic scans of the Y-BFO photoanodes show the stability of photoresponse, irrespective of the film's thickness. There is no clear cathodic photocurrent observation for the Y-BFO thin films confirming the n-type semiconductor behavior of the Y-BFO photoelectrodes.

2.
ACS Appl Mater Interfaces ; 10(17): 15240-15249, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29630331

ABSTRACT

In the present work, we study the hysteretic behavior in the electric-field-dependent capacitance and the current characteristics of 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BCZT)/ZnO bilayers deposited on 0.7 wt % Nb-doped (001)-SrTiO3 (Nb:STO) substrates in a metal-ferroelectric-semiconductor (MFS) configuration. The X-ray diffraction measurements show that the BCZT and ZnO layers are highly oriented along the c-axis and have a single perovskite and wurtzite phases, respectively, whereas high-resolution transmission electron microscopy revealed very sharp Nb:STO/BCZT/ZnO interfaces. The capacitance-electric field ( C- E) characteristics of the bilayers exhibit a memory window of 47 kV/cm and a capacitance decrease of 22%, at a negative bias. The later result is explained by the formation of a depletion region in the ZnO layer. Moreover, an unusual resistive switching (RS) behavior is observed in the BCZT films, where the RS ratio can be 500 times enhanced in the BCZT/ZnO bilayers. The RS enhancement can be understood by the barrier potential profile modulation at the depletion region, in the BCZT/ZnO junction, via ferroelectric polarization switching of the BCZT layer. This work builds a bridge between the hysteretic behavior observed either in the C- E and current-electric field characteristics on a MFS structure.

3.
Sci Rep ; 6: 25535, 2016 05 09.
Article in English | MEDLINE | ID: mdl-27157090

ABSTRACT

BiFeO3 is one of the most promising multiferroic materials but undergoes two major drawbacks: low dielectric susceptibility and high dielectric loss. Here we report high in-plane dielectric permittivity (ε' ∼2500) and low dielectric loss (tan δ < 0.01) obtained on Bi0.95Y0.05FeO3 films epitaxially grown on SrTiO3 (001) by pulsed laser deposition. High resolution transmission electron microscopy and geometric phase analysis evidenced nanostripe domains with alternating compressive/tensile strain and slight lattice rotations. Nanoscale mixed phase/domain ensembles are commonly found in different complex materials with giant dielectric/electromechanical (ferroelectric/ relaxors) or magnetoresistance (manganites) response. Our work brings insight into the joined role of chemical pressure and epitaxial strain on the appearance of nanoscale stripe structure which creates conditions for easy reorientation and high dielectric response, and could be of more general relevance for the field of materials science where engineered materials with huge response to external stimuli are a highly priced target.

4.
Biofabrication ; 5(1): 015007, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23254399

ABSTRACT

We report on the fabrication of magnetite/salicylic acid/silica shell/antibiotics (Fe(3)O(4)/SA/SiO(2)/ATB) thin films by matrix-assisted pulsed laser evaporation (MAPLE) to inert substrates. Fe(3)O(4)-based powder have been synthesized and investigated by XRD and TEM. All thin films were studied by FTIR, SEM and in vitro biological assays using Staphylococcus aureus and Pseudomonas aeruginosa reference strains, as well as eukaryotic HEp-2 cells. The influence of the obtained nanosystems on the microbial biofilm development as well as their biocompatibility has been assessed. For optimum deposition conditions, we obtained uniform adherent films with the composition identical with the raw materials. Fe(3)O(4)/SA/SiO(2)/ATB thin films had an inhibitory activity on the ability of microbial strains to initiate and develop mature biofilms, in a strain- and antibiotic-dependent manner. These magnetite silica thin films are promising candidates for the development of novel materials designed for the inhibition of medical biofilms formed by different pathogenic agents on common substrates, frequently implicated in the etiology of chronic and hard to treat infections.


Subject(s)
Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Drug Carriers/chemistry , Drug Delivery Systems/instrumentation , Magnetite Nanoparticles/chemistry , Pseudomonas aeruginosa/physiology , Staphylococcus aureus/physiology , Anti-Bacterial Agents/pharmacology , Drug Carriers/chemical synthesis , Drug Delivery Systems/methods , Lasers , Pseudomonas aeruginosa/drug effects , Silicon Dioxide/chemistry , Staphylococcus aureus/drug effects
5.
J Nanosci Nanotechnol ; 12(6): 5043-50, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22905574

ABSTRACT

We present the preparation, structural and magnetic properties of nanosized magnetite obtained by the crystallization of a series of Fe-containing borosilicate glasses. Several compositions with the ratio Fe2O3/SiO2 spanning from 0.37 to 0.67 were investigated as a function of two nucleators Cr2O3 and P2O5, respectively, and modifiers and intermediates (Al2O3 and MgO). Mössbauer spectroscopy revealed the degree, the type and the location of disorder induced by a specific composition and nucleators. In addition to magnetite, it was also revealed the presence of large amounts of Fe-rich paramagnetic phases. The magnetic response is analysed in relation with the amount of Fe ions which remain dispersed in the glassy matrix as noninteracting (paramagnetic) ions. We discuss the role of the nucleators on the disorder in both tetrahedral and octahedral sites of the magnetite.


Subject(s)
Crystallization/methods , Glass/chemistry , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Macromolecular Substances/chemistry , Magnetic Fields , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
6.
J Nanosci Nanotechnol ; 10(2): 1322-6, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20352794

ABSTRACT

Due to its wide band-gap (ca. 3.4 eV), ZnO is a possible candidate material to be used as transparent electrode for a new class of photovoltaic (PV) cells. Also, an increased interest for the photovoltaic properties of several organic monomers and polymers (merocyanines, phthalocyanines and porphyrins) was noticed, because of their high optical absorption in the visible region of the spectrum allowing them to be used as potential inexpensive materials for solar cells. Preparation and properties of CuPc (copper phthalocyanine) based photovoltaic cells using ZnO thin films as transparent conductor electrodes are presented in this paper. ZnO layers are grown by pulsed laser deposition, while the organic layers are obtained by thermal evaporation. Structural characterization is performed by electron microscopy. Optical and transport properties of the mutilayered structures are obtained by electrical and spectro-photometric measurements. The influence of the ZnO-polymer interface on the external quantum efficiency (EQE) of the photovoltaic cell is clearly evidenced by our measurements.

7.
Maedica (Bucur) ; 5(2): 116-23, 2010 Apr.
Article in English | MEDLINE | ID: mdl-21977134

ABSTRACT

Thyroid pathology worsens during pregnancy. Hypothyroidism can be pre-existent or may begin during pregnancy period. Most of the patients who presented hypothyroidism during pregnancy have a history of thyroid disease for which they have undergone treatment (medical, surgical or radioisotopes). Hypothyroidism is difficult to be diagnosed during pregnancy as the signs can belong to pregnancy itself. Changes in thyroid function have a major negative impact on both mother and fetus.Complications that arise depend on the severity of hypothyroidism, on how appropriately and early the treatment will be initiated, on other obstetrical and extragenital pathologies associated with the present pregnancy. Clinical symptoms are polymorphic, often nonspecific, and are related mainly to the time of occurrence and to the severity of thyroid hormone deficiency. The appropriate, early administered treatment and maintenance of a normal level of thyroid hormones minimize the risk of maternal and fetal complications and make it possible that the pregnancy may be carried to term without severe complications.

8.
J Mater Sci Mater Med ; 13(12): 1167-73, 2002 Dec.
Article in English | MEDLINE | ID: mdl-15348661

ABSTRACT

Calcium orthophosphates (CaP) and hydroxyapatite (HA) were intensively studied in order to design and develop a new generation of bioactive and osteoconductive bone prostheses. The main drawback now in the CaP and HA thin films processing persists in their poor mechanical characteristics, namely hardness, tensile and cohesive strength, and adherence to the metallic substrate. We report here a critical comparison between the microstructure and mechanical properties of HA and CaP thin films grown by two methods. The films were grown by KrF* pulsed laser deposition (PLD) or KrF* pulsed laser deposition assisted by in situ ultraviolet radiation emitted by a low pressure Hg lamp (UV-assisted PLD). The PLD films were deposited at room temperature, in vacuum on Ti-5Al-2.5Fe alloy substrate previously coated with a TiN buffer layer. After deposition the films were annealed in ambient air at 500-600 degrees C. The UV-assisted PLD films were grown in (10(-2)-10(-1) Pa) oxygen directly on Ti-5Al-2.5Fe substrates heated at 500-600 degrees C. The films grown by classical PLD are crystalline and stoichiometric. The films grown by UV-assisted PLD were crystalline and exhibit the best mechanical characteristics with values of hardness and Young modulus of 6-7 and 150-170 GPa, respectively, which are unusually high for the calcium phosphate ceramics. To the difference of PLD films, in the case of UV-assisted PLD, the GIXRD spectra show the decomposition of HA in Ca(2)P(2)O(7), Ca(2)P(2)O(9) and CaO. The UV lamp radiation enhanced the gas reactivity and atoms mobility during processing, increasing the tensile strength of the film, while the HA structure was destroyed.

SELECTION OF CITATIONS
SEARCH DETAIL
...