Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 72018 08 02.
Article in English | MEDLINE | ID: mdl-30070204

ABSTRACT

Freezing of gait (FoG) in Parkinson's disease (PD) is an incapacitating transient phenomenon, followed by continuous postural disorders. Spinal cord stimulation (SCS) is a promising intervention for FoG in patients with PD, however, its effects on distinct domains of postural control is not well known. The aim of this study is to assess the effects of SCS on FoG and distinct domains of postural control. Four patients with FoG were implanted with SCS systems in the upper thoracic spine. Anticipatory postural adjustment (APA), reactive postural responses, gait and FoG were biomechanically assessed. In general, the results showed that SCS improved FoG and APA. However, SCS failed to improve reactive postural responses. SCS seems to influence cortical motor circuits, involving the supplementary motor area. On the other hand, reactive posture control to external perturbation that mainly relies on neuronal circuitries involving the brainstem and spinal cord, is less influenced by SCS.


Subject(s)
Gait Disorders, Neurologic/therapy , Parkinson Disease/therapy , Spinal Cord Stimulation/methods , Spinal Cord/physiopathology , Aged , Brazil , Female , Gait/physiology , Gait Disorders, Neurologic/physiopathology , Humans , Male , Middle Aged , Motor Cortex/physiopathology , Parkinson Disease/physiopathology , Postural Balance/physiology
2.
Front Biosci (Elite Ed) ; 8(2): 299-310, 2016 01 01.
Article in English | MEDLINE | ID: mdl-26709663

ABSTRACT

Cerebral microdialysis is a chemical detection method capable of identifying and simultaneously sampling a wide range of substances in the micromilieu of the monitoring probe. The interstitial space of biological tissues and fluids is sampled through a thin fenestrated dialysis catheter inserted into the brain. The technique has been reported in patients with Parkinson's disease. However, the procedure is not widely used by neurosurgeons, possibly owing to unclear indications and poor effective benefits, mostly secondary to significant pitfalls. In spite of the feasibility of microdialysis in humans, many factors can affect the quality of the process. Possible pitfalls include improperly designed probe, probe insertion effects, ineffective perfusion rate, issues to optimize stabilization period, and insufficient volume sample. This article reviews those key technical features necessary for performing microdialysis in humans during deep brain stimulation for Parkinson's Disease.


Subject(s)
Deep Brain Stimulation , Microdialysis , Parkinson Disease/therapy , Humans
3.
J Neurosurg ; 125(1): 85-9, 2016 07.
Article in English | MEDLINE | ID: mdl-26684776

ABSTRACT

OBJECT Currently, bilateral procedures involve 2 sequential implants in each of the hemispheres. The present report demonstrates the feasibility of simultaneous bilateral procedures during the implantation of deep brain stimulation (DBS) leads. METHODS Fifty-seven patients with movement disorders underwent bilateral DBS implantation in the same study period. The authors compared the time required for the surgical implantation of deep brain electrodes in 2 randomly assigned groups. One group of 28 patients underwent traditional sequential electrode implantation, and the other 29 patients underwent simultaneous bilateral implantation. Clinical outcomes of the patients with Parkinson's disease (PD) who had undergone DBS implantation of the subthalamic nucleus using either of the 2 techniques were compared. RESULTS Overall, a reduction of 38.51% in total operating time for the simultaneous bilateral group (136.4 ± 20.93 minutes) as compared with that for the traditional consecutive approach (220.3 ± 27.58 minutes) was observed. Regarding clinical outcomes in the PD patients who underwent subthalamic nucleus DBS implantation, comparing the preoperative off-medication condition with the off-medication/on-stimulation condition 1 year after the surgery in both procedure groups, there was a mean 47.8% ± 9.5% improvement in the Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) score in the simultaneous group, while the sequential group experienced 47.5% ± 15.8% improvement (p = 0.96). Moreover, a marked reduction in the levodopa-equivalent dose from preoperatively to postoperatively was similar in these 2 groups. The simultaneous bilateral procedure presented major advantages over the traditional sequential approach, with a shorter total operating time. CONCLUSIONS A simultaneous stereotactic approach significantly reduces the operation time in bilateral DBS procedures, resulting in decreased microrecording time, contributing to the optimization of functional stereotactic procedures.


Subject(s)
Deep Brain Stimulation , Electrodes, Implanted , Operative Time , Parkinson Disease/therapy , Stereotaxic Techniques , Subthalamic Nucleus/surgery , Aged , Feasibility Studies , Female , Humans , Male , Middle Aged , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...