Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pathog Dis ; 79(8)2021 10 07.
Article in English | MEDLINE | ID: mdl-34550340

ABSTRACT

Mosquito-borne viral diseases like chikungunya and dengue infections can cause severe illness and have become major public health concerns. Chikungunya virus (CHIKV) and dengue virus (DENV) infections share similar primary clinical manifestations and are transmitted by the same vector. Thus, the probability of their coinfection gets increased with more severe clinical complications in the patients. The present study was undertaken to elucidate the common human interacting partners of CHIKV and DENV proteins during coinfection. The viral-host protein-protein interactome was constructed using Cytoscape. Subsequently, significant host interactors were identified during coinfection. The network analysis elucidated 57 human proteins interacting with both CHIKV and DENV, represented as hub-bottlenecks. The functional and biological analyses of the 40 hub-bottlenecks revealed that they are associated with phosphoinositide 3-kinases (PI3K)/AKT, p53 signaling pathways, regulation of cell cycle and apoptosis during coinfection. Moreover, the molecular docking analysis uncovered the tight and robust binding of selected hub-bottlenecks with CHIKV/DENV proteins. Additionally, 23 hub-bottlenecks were predicted as druggable candidates that could be targeted to eradicate the host-viral interactions. The elucidated common host binding partners during DENV and CHIKV coinfection as well as indicated approved drugs can support the therapeutics development.


Subject(s)
Chikungunya Fever/metabolism , Chikungunya Fever/virology , Chikungunya virus/physiology , Computational Biology/methods , Dengue Virus/physiology , Dengue/metabolism , Dengue/virology , Host-Pathogen Interactions , Animals , Carrier Proteins , Drug Discovery/methods , Humans , Models, Molecular , Protein Binding , Structure-Activity Relationship
2.
Virusdisease ; 32(1): 55-64, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33723515

ABSTRACT

The world is reeling under severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, and it will be frightening if compounded by other co-existing infections. The co-occurrence of the Dengue virus (DENV) and Chikungunya virus (CHIKV) has been into existence, but recently the co-infection of DENV and SARS-CoV-2 has been reported. Thus, the possibility of DENV, CHIKV, and SARS-CoV-2 co-infection could be predicted in the future with enhanced vulnerability. It is essential to elucidate the host interactors and the connected pathways to understand the biological insights. The in silico approach using Cytoscape was exploited to elucidate the common human proteins interacting with DENV, CHIKV, and SARS-CoV-2 during their probable co-infection. In total, 17 interacting host proteins were identified showing association with envelope, structural, non-structural, and accessory proteins. Investigating the functional and biological behaviour using PANTHER, UniProtKB, and KEGG databases uncovered their association with several cellular pathways including, signaling pathways, RNA processing and transport, cell cycle, ubiquitination, and protein trafficking. Withal, exploring the DrugBank and Therapeutic Target Database, total seven druggable host proteins were predicted. Among all integrin beta-1, histone deacetylase-2 (HDAC2) and microtubule affinity-regulating kinase-3 were targeted by FDA approved molecules/ drugs. Furthermore, HDAC2 was predicted to be the most significant target, and some approved drugs are available against it. The predicted druggable targets and approved drugs could be investigated to obliterate the identified interactions that could assist in inhibiting viral infection.

3.
Virus Res ; 295: 198288, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33418023

ABSTRACT

The life-threatening re-emerged chikungunya virus (CHIKV) can cause an epidemic outbreak and still has no vaccine available so far. Alphavirus unique domain (AUD) of CHIKV nsP3 is a multifunctional domain that remains conserved among alphaviruses and is critical for CHIKV replication. The understanding of AUD-host protein-protein interactions and their association with the cellular processes concerning CHIKV infection are not well studied. In the current study, the protein-protein interactions of AUD and its human host were elucidated by screening of universal human cDNA library using yeast two-hybrid system. The chosen interactions were further validated by GST pull-down assay, and their network mapping was analyzed. The study revealed that the identified interactors are linked with the vesicle trafficking and transcription corepressor activities. Further, the interfacial residues of interactions between viral and host proteins were predicted, which will further provide the new platform to develop novel antivirals.


Subject(s)
Alphavirus , Chikungunya Fever , Chikungunya virus , Alphavirus/genetics , Chikungunya virus/genetics , Humans , Two-Hybrid System Techniques , Viral Nonstructural Proteins/genetics , Virus Replication/genetics
4.
Expert Opin Ther Pat ; 30(6): 467-480, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32249636

ABSTRACT

Introduction: Chikungunya virus (CHIKV), a reemerging human arthropod borne virus, can causes global epidemic outbreaks and has become a serious health concern due to the unavailability of any antiviral therapy/vaccine. Extensive research has been conducted to target different proteins from CHIKV to curtail the spread of virus.Areas covered: This review provides an overview of the granted patents including the current status of antiviral strategies targeting CHIKV.Expert opinion: Under the current scenario, potential molecules and different approaches have been utilized to suppress CHIKV infection. MV-CHIKV and VRC-CHKVLP059-00-VP vaccine candidates have successfully completed phase I clinical trials and ribavirin (inhibitor) has shown significant inhibition of CHIKV replication and could be the most promising candidates. The drug resistance and toxicity can be modulated by using the inhibitors/drugs in combination. Moreover, nanoparticle formulations can improve the efficacy and bioavailability of drugs.


Subject(s)
Antiviral Agents/pharmacology , Chikungunya Fever/drug therapy , Chikungunya virus/drug effects , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Chikungunya Fever/virology , Drug Development , Drug Resistance, Viral , Humans , Patents as Topic , Viral Vaccines/administration & dosage , Virus Replication/drug effects
5.
Virusdisease ; 30(3): 394-402, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31803807

ABSTRACT

Non-structural protein 4 (nsP4) polymerase of chikungunya virus (CHIKV) has a crucial role in genome replication and hence could act as a promising target for novel therapeutics. Though, nsP4 is important in viral life cycle, but it is less explored as therapeutic target. The catalytic core of nsP4 Polymerase includes conserved GDD motif which is present not only across different CHIKV strains but also across other Alphaviruses. This emphasizes the uniqueness and importance of this motif in the functioning of nsP4 polymerase and hence, we focused on GDD motif for docking of drug molecules. Herein, a model of nsP4 polymerase was developed using Swiss Model, validated by Ramachandran plot and molecular dynamic simulation. Molecular docking was performed using LeadIT FlexX flexible docking module with FDA approved drug molecule library. On the basis of flexX score, top 5 leads with flexX scores - 33.7588, - 30.2555, - 29.6043, - 28.916 and - 28.5042 were selected. The bonding pattern of these leads were analysed in discovery studio and were further screened on the basis of molecular dynamic simulation studies. Simulation analysis revealed that only the top lead, Mitoxantrone Hydrochloride which is an anticancer drug and is currently indicated in leukemias and lymphomas interacted favourably and stably with nsP4. Our findings suggest that Mitoxantrone Hydrochloride can be a potential novel inhibitor of CHIKV polymerase and should be further validated by in vitro assays.

SELECTION OF CITATIONS
SEARCH DETAIL
...