Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 12(2)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36839473

ABSTRACT

Arthroplasty is a highly successful treatment to restore the function of a joint. The contamination of the implant via bacterial adhesion is the first step toward the development of device-associated infections. The emerging concern about antimicrobial resistance resulted in a growing interest to develop alternative therapeutic strategies. Thus, the increment in the incidence of bacterial periprosthetic infections, the complexity of treating infections caused by organisms growing in biofilms, together with the rise in antibiotic resistant bacteria, expose the need to design novel surfaces that provide innovative solutions to these rising problems. The aim of this work is to develop a coating on titanium (Ti) suitable for inhibiting bacterial adhesion and proliferation, and hence, biofilm formation on the surface. We have successfully prepared polyacrylamide hydrogels containing the conventional antibiotic ampicillin (AMP), silver nanoparticles (AgNPs), and both, AMP and AgNPs. The release of the antibacterial agents from the gelled to aqueous media resulted in an excellent antibacterial action of the loaded hydrogels against sessile S. aureus. Moreover, a synergic effect was achieved with the incorporation of both AMP and AgNPs in the hydrogel, which highlights the importance of combining antimicrobial agents having different targets. The polyacrylamide hydrogel coating on the Ti surface was successfully achieved, as it was demonstrated by FTIR, contact angle, and AFM measurements. The modified Ti surfaces having the polyacrylamide hydrogel film containing AgNPs and AMP retained the highest antibacterial effect against S. aureus as it was found for the unsupported hydrogels. The modified surfaces exhibit an excellent cytocompatibility, since healthy, flattened MC3T3-E1 cells spread on the surfaces were observed. In addition, similar macrophage RAW 264.7 adhesion was found on all the surfaces, which could be related to a low macrophage activation. Our results indicate that AMP and AgNP-loaded polyacrylamide hydrogel films on Ti are a good alternative for designing efficient antibacterial surfaces having an excellent cytocompatibility without inducing an exacerbated immune response. The approach emerges as a superior alternative to the widely used direct adsorption of therapeutic agents on surfaces, since the antimicrobial-loaded hydrogel coatings open the possibility of modulating the concentration of the antimicrobial agents to enhance bacterial killing, and then, reducing the risk of infections in implantable materials.

2.
ACS Appl Bio Mater ; 4(8): 6451-6461, 2021 08 16.
Article in English | MEDLINE | ID: mdl-35006865

ABSTRACT

The use of implants in orthopedics and dental practice is a widespread surgical procedure to treat diverse diseases. However, peri-implantitis due to infections and/or poor osseointegration can lead to metallic implant failure. The aim of this study was to develop a multifunctional coating on titanium (Ti) surfaces, to simultaneously deal with both issues, by combining antibacterial silver nanoparticles (AgNPs) and regenerative properties of lactoferrin (Lf). A simple and cost-effective methodology that allows the direct multifunctionalization of Ti surfaces was developed. The modified surfaces were characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy, and contact angle measurements. Additionally, in vitro preosteoblast cell adhesion, cell viability, and differentiation were evaluated. The antibacterial capability of the surfaces was tested against Staphylococcus aureus as a prosthesis infection model strain. Our results showed that Lf adsorbed on both Ti surfaces and Ti surfaces with adsorbed AgNPs. Simultaneously, the presence of Lf and AgNPs notably improved preosteoblast adhesion, proliferation, and differentiation, whereas it reduced the bacterial colonization by 97.7%. Our findings indicate that this simple method may have potential applications in medical devices to both improve osseointegration and reduce bacterial infection risk, enhancing successful implantation and patients' quality of life.


Subject(s)
Metal Nanoparticles , Orthopedics , Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible/pharmacology , Humans , Metal Nanoparticles/chemistry , Osseointegration , Prostheses and Implants , Quality of Life , Silver/pharmacology , Titanium/pharmacology
3.
Langmuir ; 36(28): 8272-8281, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32569473

ABSTRACT

Photodynamic inactivation (PDI) of microorganisms, based on the ability of photosensitizers to produce reactive oxygen species (ROS) under adequate irradiation, emerges as a promising technique to face the increasing bacterial resistance to conventional antimicrobials. In this work, we analyze the combined action of Riboflavin (Rf) and pectin-coated gold nanoparticles (PecAuNP) on Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) as suitable PDI strategy. We demonstrate that gold ions can be generated upon Rf-photosensitized oxidation of PecAuNP. Transient absorption spectroscopy shows that the Rf cationic radical can accept an electron from the nanoparticles to yield Au(I) ions, which in aqueous medium is disproportionate to yield Au0 and Au(III). Microbiological assays showed that the presence of PecAuNP enhanced the antibacterial activity of photoirradiated Rf toward S. aureus and P. aeruginosa, in line with the well-known antibacterial activity of gold ions. Moreover, the irradiation of Rf solutions containing about 100 µM PecAuNP enabled the solutions to be bactericidal against both bacteria.


Subject(s)
Gold , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Photosensitizing Agents/pharmacology , Riboflavin , Staphylococcus aureus
4.
ACS Biomater Sci Eng ; 5(10): 4920-4936, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-33455240

ABSTRACT

Device-associated infections (DAI) remain a serious concern in modern healthcare. Bacterial attachment to a surface is the first step in biofilm formation, which is one of the main causes of DAIs. The development of materials capable of preventing or inhibiting bacterial attachment constitutes a promising approach to deal with this problem. The multifactorial nature of biofilm maturation and antibiotic resistance directs the research for multitargeted or combinatorial therapeutic approaches. One attractive strategy is the modification or the engineering of surfaces in order to provide antiadhesive and/or antimicrobial properties. Currently, several different approaches that involve physical and chemical surface modification deliver some possible alternatives to achieve this goal. The engineered surfaces can be coated with molecules capable of inhibiting the bacterial adhesion or with active agents that kill microorganisms. In addition, surfaces can also be modified in order to be stimuli-responsive, responding to a particular trigger and then delivering the consequent antimicrobial outcome. Here, we review the prevailing strategies to modify surfaces in order to create an antimicrobial surface and discuss how different surface functionalization can affect bacterial adhesion and/or viability.

5.
ACS Appl Mater Interfaces ; 10(28): 23657-23666, 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-29927235

ABSTRACT

The increasing incidence of infections in implantable devices has encouraged the search for biocompatible antimicrobial surfaces. To inhibit the bacterial adhesion and proliferation on biomaterials, several surface functionalization strategies have been developed. However, most of these strategies lead to bacteriostatic effect and only few of these are able to reach the bactericidal condition. In this work, bactericidal surfaces were designed through the functionalization of titanium surfaces with poly-l-lysine (PLL) as the mediator for the incorporation of antimicrobial silver nanoparticles (AgNPs). This functionalization influences the adsorption of the particles on the substrate impeding the agglomeration observed when bare titanium surfaces are used, leading to a homogeneous distribution of AgNPs on the surfaces. The antimicrobial activity of this surface has been tested against two different strains, namely, Staphylococcus aureus and Pseudomonas aeruginosa. For both strains and different AgNPs sizes, the surface modified with PLL and AgNPs shows a much enhanced antimicrobial activity in comparison with AgNPs deposited on bare titanium. This enhanced antibacterial activity is high enough to reach bactericidal effect, a condition hard to achieve in antimicrobial surfaces. Importantly, the designed surfaces are able to decrease the bacterial viability more than 5 orders with respect to the initial bacterial inoculum. That means that a relative low load of AgNPs on the PLL-modified titanium surfaces reaches 99.999% bacterial death after 24 h. The results of the present study are important to avoid infections in indwelling materials by reinforcing the preventive antibiotic therapy usually dosed throughout the surgical procedure and during the postoperative period.


Subject(s)
Polylysine/chemistry , Anti-Bacterial Agents , Anti-Infective Agents , Metal Nanoparticles , Microbial Sensitivity Tests , Silver
SELECTION OF CITATIONS
SEARCH DETAIL
...