Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 220: 115087, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36566963

ABSTRACT

This study assesses the cumulative impact of climate change and reservoir operation on flow regime and fisheries in the Sekong River Basin. Ensemble of five selected Regional Climate Models (RCMs) were used to project the future climate under RCP4.5 and RCP8.5 scenarios. The projected future climate was used to simulate the future hydrology using the SWAT model while HEC-ResSim was utilized for reservoir simulation. Finally fish-flow relationship was developed to estimate the fish catch and productivity in future. Upon investigation we found that, Sekong River Basin is likely grow warmer and drier in future under climate change. The basin is expected to face 1.3-3.6 °C rise in mean annual temperature and receive 0-6% less annual rainfall in future. The wet season in the basin is anticipated to be drier (0% to -6%) while the dry season rainfall shows no particular trend (-3%-10%). Such a change in climate is likely to alter the mean annual flow in future between -3 and 5% at Attapeu, -6 to 2% at Ban Veunkhane, Lao PDR, and -7 to 1% at Siempang, Cambodia (basin outlet). Under climate change, we expect decrement in minimum flow but increment in the maximum flow while opposite is anticipated under reservoir operation. Operation of Xekaman 1 and Sekong 4A are likely to increase the minimum flow at river outlet by 32-59% and 13-18% respectively whereas maximum flow is expected to decrease by 28-5%. In addition, climate change is likely to have crucial impact on fisheries with up to 19% and 12% reduction in fish catches and fish productivity respectively. However, reservoirs tend to have negligible impact on fisheries.


Subject(s)
Climate Change , Rivers , Animals , Cambodia , Fisheries , Laos , Fishes
2.
Sci Rep ; 11(1): 17089, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429491

ABSTRACT

The diverse impacts of anthropogenic climate change in the spatiotemporal distribution of global freshwater are generally addressed through global scale studies, which suffer from uncertainties arising from coarse spatial resolution. Multi-catchment, regional studies provide fine-grained details of these impacts but remain less explored. Here, we present a comprehensive analysis of climate change impacts on the hydrology of 19 river basins from different geographical and climatic conditions in South and Southeast Asia. We find that these two regions will get warmer (1.5 to 7.8 °C) and wetter (- 3.4 to 46.2%) with the expected increment in river flow (- 18.5 to 109%) at the end of the twenty-first century under climate change. An increase in seasonal hydro-climatic extremes in South Asia and the rising intensity of hydro-climatic extremes during only one season in Southeast Asia illustrates high spatiotemporal variability in the impact of climate change and augments the importance of similar studies on a larger scale for broader understanding.

3.
Environ Res ; 186: 109544, 2020 07.
Article in English | MEDLINE | ID: mdl-32361258

ABSTRACT

Among many factors the hydrology of a watershed is mainly influenced by climate and land use change. This study examined the impacts of climate change on water resources and extreme events in the Bang Pakong-Prachin Buri River Basin, Thailand using three different Regional Climate Models (RCMs) ACCESS1-CSIRO-CCAM, CNRM-CM5-CSIRO-CCAM, and MPI-ESM-LR-CSIRO-CCAM under RCP4.5 and RCP8.5 emission scenarios. Soil and Water Assessment Tool (SWAT) was used to simulate the future streamflow and Extreme Value Type I distribution (EVI) was used to analyze the extreme events under projected climate conditions. The result of this study showed an increase in maximum (1.9 °C/3.6 °C) and minimum (1.6 °C/3.3 °C) temperatures under RCP4.5/8.5 at the end of the 21st century. In addition, projected rainfall is expected to decrease up to 6.8% (8.5%) in 2050s and then increase slowly such that the decrement remains 4.2% (11.0%) under RCP4.5 (RCP8.5) at the end of the century. The rainfall pattern is projected to considerably fluctuate, in particular, a shift in long term average annual peak event from September to August is predicted in 2080s under emission scenario RCP4.5 (RCP8.5). On the other hand, the average annual discharge is expected to increase up to 13.5% (2020s) and 7.6% (2050s) under RCP4.5 and RCP8.5 respectively with decreasing trend in low flows and increasing trend in high flows. Further analysis on extreme events; strengthened the results from hydrological modeling with an increase in flow volume for the same return period under changed climate conditions. This raises water resources management issues in the Bang Pakong-Prachin Buri River Basin regarding the frequency of flood and drought events in the future calling for proper policy formulation and implementation.


Subject(s)
Hydrology , Rivers , Climate Change , Floods , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL
...