Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(12): e10611, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38089895

ABSTRACT

The richness and composition of a small mammal community inhabiting semiarid California oak woodland may be changing in response to climate change, but we know little about the causes or consequence of these changes. We applied a capture-mark-recapture model to 17 years (1997-2013) of live trapping data to estimate species-specific abundances. The big-eared woodrat was the most frequently captured species in the area, contributing 58% of total captures. All small mammal populations exhibited seasonal fluctuations, whereas those of the California mouse, brush mouse, and pinyon mouse declined during the study period. We also applied a multispecies dynamic occupancy model to our small mammal detection history data to estimate species richness, occupancy (ψ), detection (p), local extinction (ϵ), and colonization (γ) probabilities, and to discern factors affecting these parameters. We found that ψ decreased from 0.369 ± 0.088 in 1997 to 0.248 ± 0.054 in 2013; γ was lower during the dry season (May-September) than the wet season (October-April) and was positively influenced by total seasonal rainfall (slope parameter, ß = 0.859 ± 0.371; 95% CI = 0.132-1.587). Mean mammalian species richness decreased from 11.943 ± 0.461 in 1997 to 7.185 ± 0.425 in 2013. With highly variable climatic patterns expected in the future, especially increased frequency and intensity of droughts, it is important to monitor small mammal communities inhabiting threatened California oak woodlands.

2.
Ecol Evol ; 12(1): e8512, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35136560

ABSTRACT

Once widespread throughout the tropical forests of the Indian Subcontinent, the sloth bears have suffered a rapid range collapse and local extirpations in the recent decades. A significant portion of their current distribution range is situated outside of the protected areas (PAs). These unprotected sloth bear populations are under tremendous human pressures, but little is known about the patterns and determinants of their occurrence in most of these regions. The situation is more prevalent in Nepal where virtually no systematic information is available for sloth bears living outside of the PAs. We undertook a spatially replicated sign survey-based single-season occupancy study intending to overcome this information gap for the sloth bear populations residing in the Trijuga forest of southeast Nepal. Sloth bear sign detection histories and field-based covariates data were collected between 2 October and 3 December 2020 at the 74 randomly chosen 4-km2 grid cells. From our results, the model-averaged site use probability (ψ ± SE) was estimated to be 0.432 ± 0.039, which is a 13% increase from the naïve estimate (0.297) not accounting for imperfect detections of sloth bear signs. The presence of termite mound and the distance to the nearest water source were the most important variables affecting the habitat use probability of sloth bears. The average site-level detectability (p ± SE) of sloth bear signs was estimated to be 0.195 ± 0.003 and was significantly determined by the index of human disturbances. We recommend considering the importance of fine-scale ecological and anthropogenic factors in predicting the sloth bear-habitat relationships across their range in the Churia habitat of Nepal, and more specifically in the unprotected areas.

3.
Trends Ecol Evol ; 35(12): 1052-1055, 2020 12.
Article in English | MEDLINE | ID: mdl-33097287

ABSTRACT

Zoonosis-based epidemics are inevitable unless we revisit our relationship with the natural world, protect habitats, and regulate wildlife trade, including live animals and non-sustenance products. To prevent future zoonoses, governments must establish effective legislation addressing wildlife trade, protection of habitats, and reduction of the wildlife-livestock-human interface.


Subject(s)
Animals, Wild , Coronavirus Infections , Pandemics , Pneumonia, Viral , Animals , Betacoronavirus , COVID-19 , Humans , SARS-CoV-2 , Zoonoses/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...