Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol Evol ; 7(1): 272-85, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25539725

ABSTRACT

The vomeronasal organ (VNO) is an olfactory structure for the detection of pheromones. VNO neurons express three groups of unrelated G-protein-coupled receptors. Type-2 vomeronasal receptors (V2Rs) are specifically localized in the basal neurons of the VNO and are believed to sense protein pheromones eliciting specific reproductive behaviors. In murine species, V2Rs are organized into four families. Family-ABD V2Rs are expressed monogenically and coexpress with family-C V2Rs of either subfamily C1 (V2RC1) or subfamily C2 (V2RC2), according to a coordinate temporal diagram. Neurons expressing the phylogenetically ancient V2RC1 coexpress family-BD V2Rs or a specific group of subfamily-A V2Rs (V2RA8-10), whereas a second neuronal subset (V2RC2-positive) coexpresses a recently expanded group of five subfamily-A V2Rs (V2RA1-5) along with vomeronasal-specific Major Histocompatibility Complex molecules (H2-Mv). Through database mining and Sanger sequencing, we have analyzed the onset, diversification, and expansion of the V2R-families throughout the phylogeny of Rodentia. Our results suggest that the separation of V2RC1 and V2RC2 occurred in a Cricetidae ancestor in coincidence with the evolution of the H2-Mv genes; this phylogenetic event did not correspond with the origin of the coexpressing V2RA1-5 genes, which dates back to an ancestral myomorphan lineage. Interestingly, the evolution of receptors within the V2RA1-5 group may be implicated in the origin and diversification of some of the V2R putative cognate ligands, the exocrine secreting peptides. The establishment of V2RC2, which probably reflects the complex expansion and diversification of family-A V2Rs, generated receptors that have probably acquired a more subtle functional specificity.


Subject(s)
Evolution, Molecular , Phylogeny , Receptors, Pheromone/genetics , Rodentia/genetics , Animals , Major Histocompatibility Complex/genetics , Mice , Pheromones/genetics , Receptors, Pheromone/physiology , Vomeronasal Organ/physiology
2.
Front Neuroanat ; 8: 101, 2014.
Article in English | MEDLINE | ID: mdl-25309342

ABSTRACT

Exocrine gland-secreting peptides (ESPs) are a protein family involved in the pheromonal communication of rodents. ESP1 is a lacrimal peptide synthesized by the extraorbital glands of males of specific mouse strains that modulates the sexual behavior in females. Reportedly, BALB/c males, that produce high level of ESP1 in the tear fluid, were shown to enhance the lordosis behavior in C57BL/6 females during mating. In contrast, C57BL/6 and ICR males, both unable to express ESP1, failed to modulate this sexual behavior. Nonetheless, ICR males did become competent to enhance lordosis behavior in C57BL/6 females providing these were pre-exposed to ESP1. To exclude any strain differences, here, we investigated the pheromonal role of the extraorbital glands and indirectly of ESP1 in animals of the same strain. This was performed by applying the lordosis experimental paradigm in BALB/c mice before and after the surgical removal of these glands in males. The excision of the extraorbital glands reduced but did not abolish the production of ESP1 in the lacrimal fluid of BALB/c mice. An immunological analysis on soluble extracts of the glands that drain into the conjunctival sac revealed that the intraorbital glands (ILGs) are also responsible for the production of ESP1. The removal of both the extra and ILGs completely eliminated the tear secretion of ESP1. Extraorbital gland-deficient BALB/c mice were still able to induce lordosis behavior in sexually receptive females. In contrast, males with the removal of both the extra and ILGs failed to enhance lordosis behavior in females. Unexpectedly, C57BL/6 males did improve this sexual performance in BALB/c females. However, an analysis of the tear fluid of C57BL/6 males revealed low but detectable levels of ESP1. Overall, our study highlights the relevance of the orbital glands in modulating reproductive behavior and the sensitivity of the vomeronasal system to detect trace amount of ESP1.

3.
J Physiol ; 587(Pt 17): 4265-79, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19622610

ABSTRACT

Olfactory sensory neurons use a chloride-based signal amplification mechanism to detect odorants. The binding of odorants to receptors in the cilia of olfactory sensory neurons activates a transduction cascade that involves the opening of cyclic nucleotide-gated channels and the entry of Ca(2+) into the cilia. Ca(2+) activates a Cl(-) current that produces an efflux of Cl(-) ions and amplifies the depolarization. The molecular identity of Ca(2+)-activated Cl(-) channels is still elusive, although some bestrophins have been shown to function as Ca(2+)-activated Cl(-) channels when expressed in heterologous systems. In the olfactory epithelium, bestrophin-2 (Best2) has been indicated as a candidate for being a molecular component of the olfactory Ca(2+)-activated Cl(-) channel. In this study, we have analysed mice lacking Best2. We compared the electrophysiological responses of the olfactory epithelium to odorant stimulation, as well as the properties of Ca(2+)-activated Cl(-) currents in wild-type (WT) and knockout (KO) mice for Best2. Our results confirm that Best2 is expressed in the cilia of olfactory sensory neurons, while odorant responses and Ca(2+)-activated Cl(-) currents were not significantly different between WT and KO mice. Thus, Best2 does not appear to be the main molecular component of the olfactory channel. Further studies are required to determine the function of Best2 in the cilia of olfactory sensory neurons.


Subject(s)
Chloride Channels/physiology , Chlorides/metabolism , Eye Proteins/metabolism , Ion Channel Gating/physiology , Nasal Mucosa/physiology , Olfactory Receptor Neurons/physiology , Smell/physiology , Animals , Bestrophins , Cells, Cultured , Chloride Channels/metabolism , Mice , Mice, Knockout , Models, Neurological
SELECTION OF CITATIONS
SEARCH DETAIL
...