Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Leukoc Biol ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652699

ABSTRACT

The Mammalian Target of Rapamycin (mTOR) pathway plays a key role in determining immune cells function through modulation of their metabolic status. By specific deletion of Rictor in CD11c+ myeloid cells (referred to here as CD11cRicΔ/Δ), this study investigated the role of mTOR complex 2 (mTORC2) signalling in dendritic cells (DCs) function in mice. We showed that upon DSS-induced colitis, lack of mTORC2 signalling CD11c+ cells diminishes colitis score, and abrogates dendritic cell (DC) migration to the mesenteric lymph nodes (MLN), thereby diminishing the infiltration of T helper (Th) 17 cells in the lamina propria (LP) and subsequent inflammation. These findings corroborate with abrogation of cytoskeleton organization and decreased activation of Rac1 and Cdc42 GTPases observed in CD11c+-mTORC2-deficient cells. Meta-analysis on colonic samples from ulcerative colitis (UC) patients revealed increased gene expression of pro-inflammatory cytokines which coincided with augmented expression of mTOR pathway, positive correlation between the DC marker ITGAX and IL-6, the expression of RICTOR, and CDC42. Together, this work proposes that targeting mTORC2 on DCs offers a key to hamper inflammatory responses and this way, ameliorates the progression and severity of intestinal inflammatory diseases.

2.
Front Immunol ; 13: 839359, 2022.
Article in English | MEDLINE | ID: mdl-36248890

ABSTRACT

Acute rejection (AR) is a process triggered via the recognition of grafted organ-derived antigens by the immune system, which could present as a life-threatening condition. In the context of a kidney transplant, despite improvement with immunosuppressive therapies, AR maintains a significant incidence of 10%, and currently available drugs generally act in similar and canonical pathways of lymphocyte activation. This prompted the research for different approaches to identify potential novel targets that could improve therapeutic interventions. Here, we conducted a transcriptome analysis comparing groups of acute rejection (including T cell-mediated rejection and antibody-mediated rejection) to stable grafts that included differentially expressed genes, transcription factor and kinase enrichment, and Gene Set Enrichment Analysis. These analyses revealed inflammasome enhancement in rejected grafts and AIM2 as a potential component linked to acute rejection, presenting a positive correlation to T-cell activation and a negative correlation to oxidative phosphorylation metabolism. Also, the AIM2 expression showed a global accuracy in discerning acute rejection grafts (area under the curve (AUC) = 0.755 and 0.894, p < 0.0001), and meta-analysis comprising different studies indicated a considerable enhancement of AIM2 in rejection (standardized mean difference (SMD) = 1.45, [CI 95%, 1.18 to 1.71]), especially for T cell-mediated rejection (TCMR) (SMD = 2.01, [CI 95%, 1.58 to 2.45]). These findings could guide future studies of AIM2 as either an adjuvant target for immunosuppression or a potential biomarker for acute rejection and graft survival.


Subject(s)
Graft Rejection , Inflammasomes , Biomarkers , Kidney , Transcription Factors
3.
Curr Res Immunol ; 3: 13-22, 2022.
Article in English | MEDLINE | ID: mdl-35496825

ABSTRACT

Little is known about the diversity in immune profile of the different wild type strains of zebrafish (Danio rerio), despite its growing popularity as an animal model to study human diseases and drug testing. In the case of data resulting from modeling human diseases, differences in the background Danio fishes have rarely been taken into consideration when interpreting results and this is potentially problematic, as many studies not even mention the source and strain of the animals. In this study, we hypothesized that different wild type zebrafish strains could present distinct immune traits. To address the differences in immune responses between two commonly used wild type strains of zebrafish, AB and Tübingen (TU), we used an intestinal inflammation model induced by 2,4,6-Trinitrobenzenesulfonic acid (TNBS) and characterized the susceptibility and immune profile in these two strains. Our data demonstrates significant differences in survival between AB and TU strains when exposed to TNBS, suggesting important physiological differences in how these strains respond to inflammatory challenges. We observed that the AB strain presented increased mortality, higher neutrophilic intestinal infiltration, decreased goblet cell numbers and decreased IL-10 expression when exposed to TNBS, compared to the TU strain. In summary, our study demonstrates strain-specific immunological responses in AB and TU animals. Finally, the significant variations in strain-related susceptibility to inflammation and the differences in the immune profile shown here, highlight that the background of each strain need to be considered when utilizing zebrafish to model diseases and for drug screening purposes, thus better immune characterization of the diverse wild type strains of zebrafish is imperative.

4.
Ann Neurol ; 91(5): 652-669, 2022 05.
Article in English | MEDLINE | ID: mdl-35226368

ABSTRACT

OBJECTIVE: Astrocytes play a significant role in the pathology of multiple sclerosis (MS). Nevertheless, for ethical reasons, most studies in these cells were performed using the Experimental Autoimmune Encephalomyelitis model. As there are significant differences between human and mouse cells, we aimed here to better characterize astrocytes from patients with MS (PwMS), focusing mainly on mitochondrial function and cell metabolism. METHODS: We obtained and characterized induced pluripotent stem cell (iPSC)-derived astrocytes from three PwMS and three unaffected controls, and performed electron microscopy, flow cytometry, cytokine and glutamate measurements, gene expression, in situ respiration, and metabolomics. We validated our findings using a single-nuclei RNA sequencing dataset. RESULTS: We detected several differences in MS astrocytes including: (i) enrichment of genes associated with neurodegeneration, (ii) increased mitochondrial fission, (iii) increased production of superoxide and MS-related proinflammatory chemokines, (iv) impaired uptake and enhanced release of glutamate, (v) increased electron transport capacity and proton leak, in line with the increased oxidative stress, and (vi) a distinct metabolic profile, with a deficiency in amino acid catabolism and increased sphingolipid metabolism, which have already been linked to MS. INTERPRETATION: Here we describe the metabolic profile of iPSC-derived astrocytes from PwMS and validate this model as a very powerful tool to study disease mechanisms and to perform non-invasive drug targeting assays in vitro. Our findings recapitulate several disease features described in patients and provide new mechanistic insights into the metabolic rewiring of astrocytes in MS, which could be targeted in future therapeutic studies. ANN NEUROL 2022;91:652-669.


Subject(s)
Induced Pluripotent Stem Cells , Multiple Sclerosis , Animals , Astrocytes/metabolism , Glutamic Acid/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Mitochondria/metabolism , Multiple Sclerosis/pathology
5.
Br J Pharmacol ; 179(8): 1496-1511, 2022 04.
Article in English | MEDLINE | ID: mdl-34029375

ABSTRACT

Histone deacetylases (HDACs) are enzymes that regulate several processes, such as transcription, cell proliferation, differentiation and development. HDACs are classified as either Zn2+ -dependent or NAD+ -dependent enzymes. Over the years, experimental and clinical evidence has demonstrated that HDAC modulation is a critical process in neurodegenerative and psychiatric disorders. Nevertheless, most of the studies have focused on the role of Zn2+ -dependent HDACs in the development of these diseases, although there is growing evidence showing that the NAD+ -dependent HDACs, known as sirtuins, are also very promising targets. This possibility has been strengthened by reports of decreased levels of NAD+ in CNS disorders, which can lead to alterations in sirtuin activation and therefore result in increased pathology. In this review, we discuss the role of sirtuins in neurodegenerative and neuropsychiatric disorders as well the possible rationale for them to be considered as pharmacological targets in future therapeutic interventions. LINKED ARTICLES: This article is part of a themed issue on Building Bridges in Neuropharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.8/issuetoc.


Subject(s)
Sirtuins , Histone Deacetylases , Humans , NAD
6.
Front Immunol ; 12: 618365, 2021.
Article in English | MEDLINE | ID: mdl-34434187

ABSTRACT

The current therapeutic options for Inflammatory Bowel Diseases (IBD) are limited. Even using common anti-inflammatory, immunosuppressive or biological therapies, many patients become unresponsive to the treatments, immunosuppressed or unable to restrain secondary infections. Statins are cholesterol-lowering drugs with non-canonical anti-inflammatory properties, whose underlying mechanisms of action still remain poorly understood. Here, we described that in vitro atorvastatin (ATO) treatment was not toxic to splenocytes, constrained cell proliferation and modulated IL-6 and IL-10 production in a dose-dependent manner. Mice exposed to dextran sulfate sodium (DSS) for colitis induction and treated with ATO shifted their immune response from Th17 towards Th2, improved the clinical and histological aspects of intestinal inflammation and reduced the number of circulating leukocytes. Both experimental and in silico analyses revealed that PPAR-α expression is reduced in experimental colitis, which was reversed by ATO treatment. While IBD patients also downregulate PPAR-α expression, the responsiveness to biological therapy relied on the restoration of PPAR-α levels. Indeed, the in vitro and in vivo effects induced by ATO treatment were abrogated in Ppara-/- mice or leukocytes. In conclusion, the beneficial effects of ATO in colitis are dependent on PPAR-α, which could also be a potential predictive biomarker of therapy responsiveness in IBD.


Subject(s)
Atorvastatin/pharmacology , Colitis/drug therapy , PPAR alpha/immunology , Animals , Colitis/chemically induced , Colitis/genetics , Colitis/immunology , Dextran Sulfate/toxicity , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Male , Mice , Mice, Knockout , PPAR alpha/genetics , Th17 Cells/immunology , Th2 Cells/immunology
7.
J Immunol ; 207(2): 626-639, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34261666

ABSTRACT

Sepsis is a complex infectious syndrome in which neutrophil participation is crucial for patient survival. Neutrophils quickly sense and eliminate the pathogen by using different effector mechanisms controlled by metabolic processes. The mammalian target of rapamycin (mTOR) pathway is an important route for metabolic regulation, and its role in neutrophil metabolism has not been fully understood yet, especially the importance of mTOR complex 2 (mTORC2) in the neutrophil effector functions. In this study, we observed that the loss of Rictor (mTORC2 scaffold protein) in primary mouse-derived neutrophils affects their chemotaxis by fMLF and their microbial killing capacity, but not the phagocytic capacity. We found that the microbicidal capacity was impaired in Rictor-deleted neutrophils because of an improper fusion of granules, reducing the hypochlorous acid production. The loss of Rictor also led to metabolic alterations in isolated neutrophils, increasing aerobic glycolysis. Finally, myeloid-Rictor-deleted mice (LysMRic Δ/Δ) also showed an impairment of the microbicidal capacity, increasing the bacterial burden in the Escherichia coli sepsis model. Overall, our results highlight the importance of proper mTORC2 activation for neutrophil effector functions and metabolism during sepsis.


Subject(s)
Mechanistic Target of Rapamycin Complex 2/metabolism , Neutrophils/metabolism , Sepsis/metabolism , Sepsis/microbiology , Animals , Chemotaxis/physiology , Escherichia coli/metabolism , Female , Glycolysis/physiology , Humans , Hypochlorous Acid/metabolism , Mice , Mice, Inbred C57BL , Phagocytosis/physiology , Signal Transduction/physiology
8.
Kidney360 ; 2(9): 1501-1509, 2021 09 30.
Article in English | MEDLINE | ID: mdl-35373097

ABSTRACT

Seminal works have now revealed the gut microbiota is connected with several diseases, including renal disorders. The balance between optimal and dysregulated host-microbiota interactions has completely changed our understanding of immunity and inflammation. Kidney injury is associated with accumulation of uremic toxins in the intestine, augmented intestinal permeability, and systemic inflammation. Intestinal bacteria can signal through innate receptors and induce immune cell activation in the lamina propria and release of inflammatory mediators into the bloodstream. But the gut microbiota can also modulate immune functions through soluble products as short-chain fatty acids (SCFAs). The three most common SCFAs are propionate, butyrate, and acetate, which can signal through specific G-protein coupled receptors (GPCRs), such as GPR43, GPR41, and GPR109a, expressed on the surface of epithelial, myeloid, endothelial, and immune cells, among others. The triggered signaling can change cell metabolism, immune cell activation, and cell death. In this study, we reviewed the gut-kidney axis, how kidney cells can sense SCFAs, and its implication in kidney diseases.


Subject(s)
Fatty Acids, Volatile , Gastrointestinal Microbiome , Bacteria/metabolism , Kidney/metabolism , Receptors, G-Protein-Coupled
9.
World J Exp Med ; 9(1): 1-13, 2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30705866

ABSTRACT

Sirtuins (SIRTs) are NAD+-dependent histone deacetylases and play a role in virtually all cell biological processes. As SIRTs functions vary according to their subtypes, they can either activate or inhibit signaling pathways upon different conditions or tissues. Recent studies have focused on metabolic effects performed by SIRTs in several cell types since specific metabolic pathways (e.g., aerobic glycolysis, oxidative phosphorylation, ß-oxidation, glutaminolysis) are used to determine the cell fate. However, few efforts have been made to understand the role of SIRTs on B lymphocytes metabolism and function. These cells are associated with humoral immune responses by secreting larger amounts of antibodies after differentiating into antibody-secreting cells. Besides, both the SIRTs and B lymphocytes are potential targets to treat several immune-mediated disorders, including cancer. Here, we provide an outlook of recent studies regarding the role of SIRTs in general cellular metabolism and B lymphocytes functions, pointing out the future perspectives of this field.

SELECTION OF CITATIONS
SEARCH DETAIL
...