Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
RSC Adv ; 8(62): 35831-35839, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-35547896

ABSTRACT

Cellulose nanofibers hold much promise for enhancing the mechanical properties of composites owing to their uniquely high stiffness and strength. One major issue limiting this performance however is the dispersion and mixing of cellulose nanofibers within thermoplastic resins. A combination of Raman imaging and chemical analysis has been used to quantify the distribution and mixing of cellulose nanocrystals (CNCs) in a polyethylene-matrix composite. Large area spectral imaging provides information about the effect of a compatibilizer - namely poly(ethylene oxide) (PEO) and maleated polyethylene (MAPE) - on the distribution of CNCs in the thermoplastic matrix. High-resolution images enable quantification of the degree of mixing between the CNCs and HDPE. Lower resolution images, but with greater spatial spread, allow quantification of the distribution of the CNCs. It is shown that the CNCs tend to agglomerate, with little increase in distribution even with the use of the compatibilizer. A shift in the position of characteristic Raman bands indicates the formation of hydrogen bonding between the PEO compatibilizer and the CNCs, which in turn is thought to affect the distribution of aggregates of the reinforcing phase.

2.
ACS Appl Mater Interfaces ; 5(19): 9785-90, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-24015867

ABSTRACT

This study reports on the fabrication of vertically aligned carbon nanotubes localized at specific sites on a growth substrate by deposition of a nanoparticle suspension using inkjet printing. Carbon nanotubes were grown with high yield as vertically aligned forests to a length of approximately 400 µm. The use of inkjet printing for catalyst fabrication considerably improves the production rate of vertically aligned patterned nanotube forests compared with conventional patterning techniques, for example, electron beam lithography or photolithography.

3.
Dent Mater ; 23(7): 799-806, 2007 Jul.
Article in English | MEDLINE | ID: mdl-16949146

ABSTRACT

OBJECTIVES: The aim of this work was to study the setting of two novel dental cements: (i) a 'hybrid' cement, incorporating an ethyl cyanoacrylate into a glass-ionomer cement (ECGIC) formulation and (ii) an ethyl cyanoacrylate/hydroxyapatite composite cement (ECHC). The mechanical role of the cyanoacrylate and its curing within the cements have been discussed. METHODS: The setting of the cements was characterised using Vickers indentation hardness and near-infrared (near-IR) spectroscopy. RESULTS: The cyanoacrylate component of ECGIC was 100% cured approximately 10min after the initial cement mixing. The ECGIC continued to increase in hardness after the cyanoacrylate component was fully cured. This proved that the fully polymerised network of cyanoacrylate did not prevent the acid-base reactions of the GIC components from continuing. The Vickers hardness number of ECGIC at 18 weeks was approximately 105. The curing of the cyanoacrylate within ECHC was much slower and was still not complete (98%) 18 weeks after the initial cement mixing. The hardness of the ECHC was shown to be correlated with the extent of cyanoacrylate cure. The Vickers hardness number of ECHC at 18 weeks was approximately 21. The primary reasons for the overall lower hardness of ECHC in comparison to ECGIC were the lower powder:liquid ratio and the softer filler type. SIGNIFICANCE: Careful consideration is needed when incorporating cyanoacrylates into dental cements, as speed of cure and hardness are particularly important.


Subject(s)
Cyanoacrylates/radiation effects , Resin Cements/chemistry , Dental Stress Analysis , Glass Ionomer Cements , Hardness , Hardness Tests , Hydroxyapatites , Light , Materials Testing , Phase Transition , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL