Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 99(11)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34664661

ABSTRACT

The objective of this study was to examine the enzyme activities of an enzymatic complex produced by Pleurotus ostreatus in different pH and the effects of adding increased application rates of this enzymatic complex on the fermentation profile, chemical composition, and in situ ruminal disappearance of whole-plant corn silage (WPCS) at the onset of fermentation and 30 d after ensiling. The lignocellulolytic enzymatic complex was obtained through in vitro cultivation of P. ostreatus. In the first experiment, the activities of laccase, lignin peroxidase (LiP), manganese peroxidase, endo- and exo-glucanase, xylanase, and mannanase were determined at pH 3, 4, 5, and 6. In the second experiment, five application rates of enzymatic complex were tested in a randomized complete block design (0, 9, 18, 27, and 36 mg of lignocellulosic enzymes/kg of fresh whole-plant corn [WPC], corresponding to 0, 0.587, 1.156, 1.734, and 2.312 g of enzymatic complex/kg of fresh WPC, respectively). There were four replicates per treatment (vacuum-sealed bags) per opening time. Bags were opened 1, 2, 3, and 7 d after ensiling (onset of fermentation period) and 30 d after ensiling to evaluate the fermentation profile, chemical composition, and in situ dry matter and neutral fiber detergent disappearance of WPCS. Laccase had the greatest activity at pH 5 (P < 0.01), whereas manganese peroxidase and LiP had the greatest activity at pH 4 (P < 0.01; P < 0.01). There was no effect of the rate of application of enzymatic complex, at the onset of fermentation, on the fermentation profile (P > 0.21), and chemical composition (P > 0.36). The concentration of water-soluble carbohydrate quadratically decreased (P < 0.01) over the ensiling time at the onset of fermentation, leading to a quadratic increase of lactic acid (P = 0.02) and a linear increase of acetic acid (P = 0.02) throughout fermentation. Consequently, pH quadratically decreased (P < 0.01). Lignin concentration linearly decreased (P = 0.04) with the enzymatic complex application rates at 30 d of storage; however, other nutrients and fermentation profiles did not change (P > 0.11) with the enzymatic complex application rates. Addition of lignocellulolytic enzymatic complex from P. ostreatus cultivation to WPC at ensiling decreased WPCS lignin concentration 30 d after ensiling; however, it was not sufficient to improve in situ disappearance of fiber and dry matter.


Subject(s)
Silage , Zea mays , Animals , Carbohydrates , Dietary Fiber , Fermentation , Silage/analysis
2.
J Dairy Sci ; 104(11): 11634-11645, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34454761

ABSTRACT

The objective of this study was to evaluate the effects of feed additives on intake and digestibility of nutrients, milk yield and composition, feeding behavior, and physiological parameters of dairy cows during the hot season. Forty Holstein cows were assigned to a randomized block design experiment with a 2 × 2 factorial treatment arrangement to evaluate (1) control diet without inclusion of additives; (2) monensin (MON), 20 mg/kg diet dry matter sodium monensin (Rumensin; Elanco); (3) Milk Sacc+ (MS+), inclusion of 40 g/cow per d of Milk Sacc+ (a blend of live yeast and organic minerals, Alltech); and (4) combination of MON and MS+. The average temperature-humidity index throughout the experimental period was 73 ± 2.84 (standard deviation). The experiment lasted 11 wk, including 2 preliminary weeks for covariate adjustments. Cows fed MS+ increased dry matter intake (% body weight), milk yield, 3.5% fat-corrected milk, and solids yield, and cows fed MON had greater milk urea nitrogen content in comparison with counterparts. Feeding MS+ increased the intake of feed particles with size between 8 and 19 mm and decreased the intake of particles shorter than 4 mm compared with other treatments. Rumination time (min/d) and chewing time (min/kg of neutral detergent fiber) were lower for cows fed MS+. Physiologic parameters (i.e., heart and respiratory rates, and body temperature) were not affected by the treatments. Overall, the use of monensin did not differ from control, and Milk Sacc+ improved performance of cows.


Subject(s)
Monensin , Saccharomyces cerevisiae , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Digestion , Female , Lactation , Milk , Minerals , Monensin/pharmacology , Rumen , Seasons
3.
J Dairy Sci ; 104(9): 9842-9852, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34099291

ABSTRACT

This study aimed to evaluate the effects of partially replacing corn silage (CS) with whole-plant soybean silage (SS) or black oat silage (OS) on nutrient intake and digestibility, in vitro neutral detergent fiber degradability of silages, feeding behavior, rumen fermentation, and performance of dairy cows. Twenty-four lactating Holstein cows (6 of which were rumen-cannulated) with 32.5 ± 4.92 kg/d milk yield, 150 ± 84.8 days in milk, and 644 ± 79.0 kg of body weight were used in a 3 × 3 Latin square design to evaluate the following treatments: (1) corn silage diet (CSD): using corn silage as the only forage source in the diet [48% dietary dry matter (DM)]; (2) whole-plant soybean silage diet (SSD): SS replacing 16% of corn silage from CSD; and (3) black oat silage diet (OSD): OS replacing 16% of corn silage from CSD. The inclusion of OS and SS decreased intakes of DM, organic matter, and crude protein. Corn silage had the greatest in vivo effective degradability of DM, and SS had the least effective degradability of neutral detergent fiber. The OSD treatment decreased milk and protein yields, whereas SSD increased rumen ammonia nitrogen concentration compared with the other diets. Cows fed OSD exhibited a greater preference for feed with small particles (<4 mm) compared with those fed SSD. Cows fed treatments containing either SS or OS at the expense of CS had increased rumination and chewing activities. Although replacing CS with OS and SS reduced feed intake, SS had no effect on productive performance of dairy cows.


Subject(s)
Silage , Zea mays , Animals , Avena , Cattle , Diet/veterinary , Dietary Fiber , Digestion , Female , Lactation , Milk , Rumen , Silage/analysis , Glycine max
4.
Front Microbiol ; 12: 660567, 2021.
Article in English | MEDLINE | ID: mdl-33927709

ABSTRACT

This study aimed to assess the effects of a heterofermentative microbial inoculant and storage length on fermentation profile, aerobic stability, and nutrient composition in whole-plant sorghum silage (WPSS) from different varieties. Experiment 1, a completely randomized design with a 2 × 3 factorial treatment arrangement, evaluated microbial inoculation [CON (50 mL distilled water) or LBLD (Lactobacillus plantarum DSM 21762, L. buchneri DSM 12856, and L. diolivorans DSM 32074; 300,000 CFU/g of fresh forage)] and storage length (14, 28, or 56 d) in forage WPSS. The LBLD silage had lower pH compared to CON, and greater concentrations of succinic acid, ethanol, 1,2-propanediol (1,2-PD), 1-propanol, 2,3-butanediol and total acids. After 56 d, lactic acid concentration was greater for CON, while acetic acid and aerobic stability were greater in LBLD silage. Experiment 2, a completely randomized design with a 2 × 3 factorial treatment arrangement, evaluated effects of microbial inoculation (same as experiment 1) and storage length (14, 28, or 56 d) in WPSS of three varieties [forage sorghum (Mojo Seed, OPAL, Hereford, TX), sorghum-sudangrass (Dyna-gro Seed, Fullgraze II, Loveland, CO, United States), or sweet sorghum (MAFES Foundation Seed Stocks, Dale, MS State, MS)]. The LBLD forage sorghum had greater acetic acid and 1,2-PD concentrations at 56 d and 28 d, respectively, but lower concentrations of propionic acid at 56 d and butyric acid at 14 and 28 d. Additionally, WSC concentration was greater for CON than LBLD at 28 d. Furthermore, CON sweet sorghum had greater lactic acid, propionic acid, and butyric acid concentrations. However, greater acetic acid and 1,2-PD were observed for LBLD sweet sorghum. The CON sweet sorghum had greater concentration of WSC and yeast counts. The CON sorghum sudangrass had greater lactic and butyric acid concentrations than LBLD at 14 d, but lower acetic acid and 1,2-PD concentrations at 56 d. Yeast counts were greater for CON than LBLD sorghum sudangrass silage. Overall, results indicate inoculation of WPSS with Lactobacillus plantarum DSM 21762, L. buchneri DSM 12856, and L. diolivorans DSM 32074 improves heterofermentative co-fermentation allowing the accumulation of acetic acid concentration and increasing antifungal capacities and aerobic stability of WPSS.

5.
J Dairy Sci ; 104(5): 5405-5416, 2021 May.
Article in English | MEDLINE | ID: mdl-33612209

ABSTRACT

This study aimed to evaluate the effects of organic acid (OA; Mold-Zap, Alltech, Nicholasville, KY) inclusion in the total mixed ration (TMR) and feeding frequency of TMR for lactating dairy cows on intake, total-tract apparent digestibility, sorting index, feeding behavior, ruminal fermentation, milk yield and composition, nitrogen balance, and serum metabolites. Twenty-four lactating Holstein cows, 4 with rumen cannulas, with (mean ± standard error) 247 ± 22.2 d in milk, 672 ± 14.6 kg of body weight, and 31.1 ± 1.09 kg of milk yield at the beginning of the experiment were used. The cows were distributed in a balanced and contemporary 4 × 4 Latin square experimental design and randomly assigned in a 2 × 2 factorial arrangement to evaluate OA [0 (OA-) or 0.5 (OA+) L of Mold-Zap/tonne of TMR on a natural matter basis] and feeding frequency of TMR offered once a day (1×) or twice a day (2×). Each experimental period lasted 21 d, with 14 d for acclimation and 7 d for data collection. The treatments were tested for TMR, in which its temperature was recorded every 2 h through a 24-h period in each experimental period. Organic acid-treated TMR showed a lower temperature during the 24-h period compared with nontreated TMR. The OA and feeding frequency had no effect on intake and total-tract apparent digestibility of dry matter and nutrients, aside from a tendency to increase neutral detergent fiber digestibility in cows fed 2×. Also, cows fed 1× tended to select more particles between 19 and 8 mm and refused particles smaller than 4 mm, whereas cows fed OA tended to select more particles smaller than 4 mm. Cows fed OA had greater milk yield and milk protein and lactose yields, but tended to have higher 3.5% fat-corrected milk yield. Neither treatment influenced ruminal and serum variables nor milk fat yield and milk production efficiency. Cows fed OA spent less time idling and tended to have lower rumination time, and tended to have higher time spent drinking water and eating, whereas animals fed 1× spent more time drinking water. Under the conditions of this experiment, we conclude that it was possible to reduce the feeding frequency of TMR, without negative effects on dairy cow performance. However, the use of OA resulted in higher milk yield and mitigated TMR temperature rise regardless of feeding frequency. The effect of external factors such as collective stimulation of intake and stage of lactation on feeding frequency effect must be surveyed in further research.


Subject(s)
Lactation , Rumen , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Digestion , Female , Fermentation , Milk , Rumen/metabolism
6.
J Dairy Sci ; 102(6): 5054-5065, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30954254

ABSTRACT

This study aimed to evaluate the effects of increasing dietary levels of microalgae (ALG), rich in docosahexaenoic acid (DHA; All-G-Rich, Alltech, Nicholasville, KY), in isolipidic diets, on animal performance, nutrient digestibility, ruminal fermentation, milk fatty acid profile, energy balance, microbial protein synthesis, and blood serum metabolites in mid-lactating dairy cows. Twenty-four Holstein cows [130.3 ± 15.4 d in milk, and 30.8 ± 0.543 kg/d of milk yield (mean ± standard error)] were used in a 4 × 4 Latin square design experiment to evaluate the following treatments: control diet, without addition of ALG; and increasing levels of ALG [2, 4, and 6 g/kg of dry matter (DM)]. The ALG decreased DM intake and increased total-tract DM apparent digestibility. A tendency was observed for a quadratic effect on total-tract NDF digestibility by ALG inclusion, with peak value of the quadratic response at 4.13 g/kg of DM dose. Moreover, ALG increased ruminal pH and decreased acetate and total volatile fatty acid concentrations. Fat-corrected milk and energy-corrected milk were quadratically affected, and a tendency for a milk yield effect was observed when ALG levels increased, whereas maximal yields were observed with intermediate doses. Milk fat, protein, and lactose concentrations were diminished, whereas productive efficiency was improved by the increase of ALG levels. Saturated fatty acid proportions were decreased, whereas polyunsaturated fatty acid proportions were increased when ALG was fed. There was low DHA transfer into milk; however, ALG inclusion decreased C18:0, C18:1 cis-9, C18:2 cis-9,12, and C18:3 cis-9,12,15 proportions, and increased C18:2 cis-9,trans-11, C18:1 trans-9, and C18:1 trans-11 proportions. Gross energy intake was decreased, whereas no effect was observed on digestible, metabolizable, or net energy intake. The ALG inclusion quadratically affected the microbial protein synthesis, with maximal enhancement at 3.24 g/kg of DM dose, and also increased serum cholesterol concentration. Under the conditions of this experiment, the inclusion of ALG in diets for mid-lactating dairy cows decreased feed intake and increased nutrient digestibility, improving productive efficiency and modifying milk fatty acid profile. Estimated intermediate doses (1.22 to 2.90 g/kg of DM) of DHA-rich ALG may be beneficial to milk, fat-corrected milk, and energy-corrected milk yields, and is recommended for dairy cows.


Subject(s)
Animal Feed , Cattle , Diet/veterinary , Docosahexaenoic Acids/pharmacology , Fatty Acids, Volatile/metabolism , Microalgae , Milk/metabolism , Rumination, Digestive , Animal Feed/analysis , Animals , Dairying , Female , Fermentation , Lactation , Lactose/metabolism , Random Allocation , Rumen/metabolism
7.
J Dairy Sci ; 102(5): 4179-4189, 2019 May.
Article in English | MEDLINE | ID: mdl-30879828

ABSTRACT

Lactation diets are composed mostly of carbohydrates that are not fully fermented by rumen microbes. The aim of this study was to evaluate exogenous fibrolytic (Fibrozyme, Alltech Inc., Nicholasville, KY) and amylolytic (Amaize, Alltech Inc.) enzymes on nutrient intake, sorting index, total-tract apparent digestibility, ruminal fermentation, nitrogen utilization, milk yield, and composition of dairy cows in mid-lactation. Thirty-two multiparous Holstein cows (181 ± 35 d in milk, 571 ± 72.7 kg of body weight, and 29.6 ± 5.24 kg/d of milk yield at the start of experiment) were blocked according to milk yield and randomly allocated to treatments in a 4 × 4 Latin square design. Treatments were (1) control, basal diet without exogenous enzymes; (2) fibrolytic enzyme (FIB), dietary supplementation of Fibrozyme at 12 g/d (51 IU of xylanase activity/kg of diet dry matter); (3) amylolytic enzyme (AMY), dietary supplementation of Amaize at 8 g/d (203 fungal amylase units/kg of diet dry matter); and (4) both fibrolytic and amylolytic enzymes (FIB+AMY) added at the same dose of the individual treatments. Enzyme products were added to the concentrate during its preparation (once a week). The supply of FIB and AMY had no effect on nutrient intake and digestibility. However, an interaction effect was observed on sorting index of feed particle size between 8 and 19 mm. Amylolytic enzyme increased the sorting for feed particles between 8 and 19 mm, only when fed without FIB. In addition, AMY decreased the sorting for feed with particle size greater than 19 mm. An interaction effect was observed between FIB and AMY for ruminal butyrate concentration and N excretion. Amylolytic enzyme increased ruminal butyrate concentration in cows treated with FIB. Further, FIB decreased milk protein production and feed efficiency only in cows not fed AMY. Amylolytic enzyme reduced urinary N excretion. Exogenous enzymes had no effect on milk production and composition of dairy cows. This study lacks evidence that fibrolytic and amylolytic enzymes can affect nutrient digestibility, ruminal fermentation, and performance of mid-lactation cows.


Subject(s)
Amylases/metabolism , Cattle , Diet/veterinary , Rumen/metabolism , Rumination, Digestive , Animal Feed/analysis , Animals , Body Weight , Dairying , Female , Fermentation , Lactation/drug effects , Milk/metabolism , Milk Proteins/metabolism , Nitrogen/metabolism , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...