Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hepatology ; 70(2): 682-695, 2019 08.
Article in English | MEDLINE | ID: mdl-30561835

ABSTRACT

Liver transplantation (LT) is a successful treatment for patients with liver failure. However, organ shortage results in over 11% of patients losing their chance of a transplant attributed to liver decompensation (LD) and death. Ischemia/reperfusion injury (IRI) following conventional cold storage (CS) is a major cause of injury leading to graft loss after LT. Normothermic machine perfusion (NMP), a method of organ preservation, provides oxygen and nutrition during preservation and allows aerobic metabolism. NMP has recently been shown to enable improved organ utilization and posttransplant outcomes following a phase I and a phase III randomized trial. The aim of the present study is to assess the impact of NMP on reducing IRI and to define the underlying mechanisms. We transplanted and compared 12 NMP with 27 CS-preserved livers by performing gene microarray, immunoprofiling of hepatic lymphocytes, and immunochemistry staining of liver tissues for assessing necrosis, platelet deposition, and neutrophil infiltration, and the status of steatosis after NMP or CS prereperfusion and postreperfusion. Recipients receiving NMP grafts showed significantly lower peak aspartate aminotransferase (AST) levels than those receiving CS grafts. NMP altered gene-expression profiles of liver tissue from proinflammation to prohealing and regeneration. NMP also reduced the number of interferon gamma (IFN-γ) and interleukin (IL)-17-producing T cells and enlarged the CD4pos CD25high CD127neg FOXP3pos regulatory T cell (Treg) pool. NMP liver tissues showed less necrosis and apoptosis in the parenchyma and fewer neutrophil infiltration compared to CS liver tissues. Conclusion: Reduced IRI in NMP recipients was the consequence of the combination of inhibiting inflammation and promoting graft regeneration.


Subject(s)
Inflammation/prevention & control , Liver Regeneration , Liver Transplantation , Liver/blood supply , Organ Preservation/methods , Perfusion/methods , Postoperative Complications/prevention & control , Reperfusion Injury/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Temperature , Young Adult
2.
Glycobiology ; 28(7): 512-521, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29688330

ABSTRACT

Invariant natural killer T (iNKT) cells recognize glycolipid antigens bound to CD1d molecules on antigen-presenting cells. Therapeutic activation of iNKT cells with the xenogeneic glycolipid α-galactosylceramide (α-GalCer) can prevent and reverse tumor growth in murine models, but clinical trials using α-GalCer-stimulated human iNKT cells have shown limited efficacy. We synthesized a series of thioglycoside analogs of α-GalCer with different substituents to the galactose residue and found that two of these compounds, XZ7 and XZ11, bound to CD1d-transfected HeLa cells and activated lines of expanded human iNKT cells. Both compounds stimulated cytolytic degranulation by iNKT cells and while XZ7 preferentially stimulated the production of the antitumor cytokine interferon-γ (IFN-γ), XZ11 preferentially stimulated interleukin-4 (IL-4) production. This biased T helper type 1 effector profile of XZ7 was also evident when iNKT were stimulated with dendritic cells presenting this glycolipid. Separate analysis of the responses of CD4+, CD8α+ and CD4-CD8- iNKT cells indicated that XZ7 preferentially activated CD8α+ iNKT cells, and to a lesser degree, CD4-CD8- iNKT cells. The partial agonist effect of glycolipid XZ7, inducing cytotoxicity and IFN-γ production but not IL-4 production, indicates that specific protumour activities of iNKT cells can be abolished, while preserving their antitumor activities, by introducing structural modifications to α-GalCer. Since XZ7 was much less potent than α-GalCer as an iNKT cell agonist, it is unlikely to be superior to α-GalCer as a therapeutic agent for cancer, but may serve as a parent compound for developing more potent structural analogs.


Subject(s)
Cytotoxicity, Immunologic , Galactosylceramides/immunology , Natural Killer T-Cells/immunology , Th1 Cells/immunology , Galactosylceramides/chemistry , Humans , Interferon-gamma/metabolism , Interleukin-4/metabolism
3.
Clin Immunol ; 183: 91-98, 2017 10.
Article in English | MEDLINE | ID: mdl-28780376

ABSTRACT

Invariant natural killer T (iNKT) cells are cytotoxic T cells that respond to glycolipid antigens presented by CD1d. Therapeutic activation of iNKT cells with α-galactosylceramide (α-GalCer) can prevent and reverse tumor growth in mice and clinical trials involving α-GalCer-stimulated iNKT cells are ongoing in humans. B cells express CD1d, however, we show that CD1d expression is reduced on B cells from patients with chronic lymphocytic leukemia (CLL). B cells from CLL patients pulsed with α-GalCer failed to stimulate cytolytic degranulation by iNKT cell lines, but could present the more potent glycolipid analogue, 7DW8-5. Retinoic acid receptor-α (RAR-α) agonists induced CD1d expression by CLL B cells, restoring their ability to present α-GalCer to CD8α+ iNKT cells, resulting in cytolytic degranulation. Thus, RAR-α agonists can augment the anti-tumor activities of iNKT cells against CLL cells in vitro. Their inclusion in iNKT cell-based therapies may benefit patients with CLL.


Subject(s)
Antigen Presentation/drug effects , Antigens, CD1d/drug effects , Antineoplastic Agents/pharmacology , B-Lymphocytes/drug effects , Benzoates/pharmacology , CD8-Positive T-Lymphocytes/drug effects , Galactosylceramides/pharmacology , Natural Killer T-Cells/drug effects , Tetrahydronaphthalenes/pharmacology , Tretinoin/pharmacology , Aged , Aged, 80 and over , Antigens, CD1d/immunology , B-Lymphocytes/immunology , Female , Humans , In Vitro Techniques , Leukemia, Lymphocytic, Chronic, B-Cell , Male , Middle Aged , Retinoic Acid Receptor alpha/agonists
4.
J Immunol ; 191(4): 1666-76, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23851681

ABSTRACT

Invariant NK T (iNKT) cells can provide help for B cell activation and Ab production. Because B cells are also capable of cytokine production, Ag presentation, and T cell activation, we hypothesized that iNKT cells will also influence these activities. Furthermore, subsets of iNKT cells based on CD4 and CD8 expression that have distinct functional activities may differentially affect B cell functions. We investigated the effects of coculturing expanded human CD4(+), CD8α(+), and CD4(-)CD8α(-) double-negative (DN) iNKT cells with autologous peripheral B cells in vitro. All iNKT cell subsets induced IgM, IgA, and IgG release by B cells without needing the iNKT cell agonist ligand α-galactosylceramide. Additionally, CD4(+) iNKT cells induced expansions of cells with phenotypes of regulatory B cells. When cocultured with α-galactosylceramide-pulsed B cells, CD4(+) and DN iNKT cells secreted Th1 and Th2 cytokines but at 10-1000-fold lower levels than when cultured with dendritic cells. CD4(+) iNKT cells reciprocally induced IL-4 and IL-10 production by B cells. DN iNKT cells expressed the cytotoxic degranulation marker CD107a upon exposure to B cells. Remarkably, whereas iNKT cell subsets could induce CD40 and CD86 expression by B cells, iNKT cell-matured B cells were unable to drive proliferation of autologous and alloreactive conventional T cells, as seen with B cells cultured in the absence of iNKT cells. Therefore, human CD4(+), CD8α(+), and DN iNKT cells can differentially promote and regulate the induction of Ab and T cell responses by B cells.


Subject(s)
B-Lymphocytes/immunology , Lymphocyte Subsets/immunology , Natural Killer T-Cells/immunology , Antibody Formation , Antigen Presentation , Antigens, CD/biosynthesis , Antigens, CD/genetics , Antigens, CD1d/biosynthesis , Antigens, CD1d/genetics , Cell Degranulation , Cell Division , Cell Line , Cells, Cultured , Coculture Techniques , Cytokines/biosynthesis , Cytokines/genetics , Dendritic Cells/immunology , Galactosylceramides/pharmacology , Gene Expression Regulation , Humans , Immunologic Memory , Immunophenotyping , Lymphocyte Activation/drug effects , Lymphopoiesis , Monocytes/cytology , Natural Killer T-Cells/drug effects , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...