Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(4)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38396893

ABSTRACT

Rice is an important cereal crop worldwide, the growth of which is affected by rice blast disease, caused by the fungal pathogen Magnaporthe oryzae. As climate change increases the diversity of pathogens, the disease resistance genes (R genes) in plants must be identified. The major blast-resistance genes have been identified in indica rice varieties; therefore, japonica rice varieties with R genes now need to be identified. Because leucine-rich repeat (LRR) domain proteins possess R-gene properties, we used bioinformatics analysis to identify the rice candidate LRR domain receptor-like proteins (OsLRR-RLPs). OsLRR-RLP2, which contains six LRR domains, showed differences in the DNA sequence, containing 43 single-nucleotide polymorphisms (SNPs) in indica and japonica subpopulations. The results of the M. oryzae inoculation analysis indicated that indica varieties with partial deletion of OsLRR-RLP2 showed susceptibility, whereas japonica varieties with intact OsLRR-RLP2 showed resistance. The oslrr-rlp2 mutant, generated using clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), showed increased pathogen susceptibility, whereas plants overexpressing this gene showed pathogen resistance. These results indicate that OsLRR-RLP2 confers resistance to rice, and OsLRR-RLP2 may be useful for breeding resistant cultivars.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Magnaporthe/physiology , Plant Breeding , Proteins/metabolism , Disease Resistance/genetics , Leucine-Rich Repeat Proteins , Oryza/microbiology , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Rice (N Y) ; 16(1): 51, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37971600

ABSTRACT

Root hairs are extensions of epidermal cells on the root tips that increase the root contract surface area with the soil. For polar tip growth, newly synthesized proteins and other materials must be incorporated into the tips of root hairs. Here, we report the characterization of PRX102, a root hair preferential endoplasmic reticulum peroxidase. During root hair growth, PRX102 has a polar localization pattern within the tip regions of root hairs but it loses this polarity after growth termination. Moreover, PRX102 participates in root hair outgrowth by regulating dense cytoplasmic streaming toward the tip. This role is distinct from those of other peroxidases playing roles in the root hairs and regulating reactive oxygen species homeostasis. RNA-seq analysis using prx102 root hairs revealed that 87 genes including glutathione S-transferase were downregulated. Our results therefore suggest a new function of peroxidase as a player in the delivery of substances to the tips of growing root hairs.

3.
Rice (N Y) ; 15(1): 39, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35859217

ABSTRACT

Understanding pollen tube growth is critical for crop yield maintenance. The pollen tube provides a path for sperm cells for fertilization with egg cells. Cells must be subdivided into functionally and structurally distinct compartments for polar tip growth, and phosphoinositides are thought to be one of the facilitators for polarization during pollen tube growth. OsSNDP3 encodes Sec14-nodulin domain-containing protein and localizes in the nucleus and the microdomains of the plasma membrane in tobacco leaf epidermis cells. OsSNDP3 is thought to bind with phosphatidylinositol 4,5-bisphosphate based on the data including the information of basic amino acids in the C-terminal and colocalization with 2X Pleckstrin homology domain of Phospholipase C delta-1. OsSNDP3 interacts with a protein that contains a class I nodulin domain. We discovered that OsSNDP3 plays a significant role in pollen tube germination using CRISPR/Cas9 systems, whereas another pollen-preferential Sec14-nodulin domain-containing protein, OsSNDP2, additively functions with OsSNDP3 during pollen tube germination. Gene Ontology analysis using downregulated genes in ossndp3 indicated that the expression of genes involved in the phosphatidylinositol metabolic process and tip growth was significantly altered in ossndp3. OsSNDP3 aids pollen polar tip growth by binding with phosphatidylinositol 4,5-bisphosphate. We can better understand the roles of phosphoinositides during pollen tube growth by studying the functions of OsSNDP3 and OsSNDP2. And downregulated genes in ossndp3 might be useful targets for future research on polar tip growth.

4.
J Adv Res ; 42: 69-81, 2022 12.
Article in English | MEDLINE | ID: mdl-35609869

ABSTRACT

INTRODUCTION: Root development is a fundamental process that supports plant survival and crop productivity. One of the essential factors to consider when developing biotechnology crops is the selection of a promoter that can optimize the spatial-temporal expression of introduced genes. However, there are insufficient cases of suitable promoters in crop plants, including rice. OBJECTIVES: This study aimed to verify the usefulness of a new rice root-preferred promoter to optimize the function of a target gene with root-preferred expression in rice. METHODS: osrns1 mutant had defects in root development based on T-DNA insertional mutant screening and CRISPR technology. To optimize the function of OsRNS1, we generated OsRNS1-overexpression plants under two different promoters: a whole-plant expression promoter and a novel root-preferred expression promoter. Root growth, yield-related agronomic traits, RNA-seq, and reactive oxygen species (ROS) accumulation were analyzed for comparison. RESULTS: OsRNS1 was found to be involved in root development through T-DNA insertional mutant analysis and gene editing mutant analysis. To understand the gain of function of OsRNS1, pUbi1::OsRNS1 was generated for the whole-plant expression, and both root growth defects and overall growth defects were found. To overcome this problem, a root-preferential overexpression line using Os1-CysPrxB promoter (Per) was generated and showed an increase in root length, plant height, and grain yield compared to wild-type (WT). RNA-seq analysis revealed that the response to oxidative stress-related genes was significantly up-regulated in both overexpression lines but was more obvious in pPer::OsRNS1. Furthermore, ROS levels in the roots were drastically decreased in pPer::OsRNS1 but were increased in the osrns1 mutants compared to WT. CONCLUSION: The results demonstrated that the use of a root-preferred promoter effectively optimizes the function of OsRNS1 and is a useful strategy for improving root-related agronomic traits as well as ROS regulation.


Subject(s)
Gene Expression Regulation, Plant , Oryza , Plant Roots/genetics , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Oryza/genetics , Oryza/metabolism , Crop Production
5.
Front Plant Sci ; 12: 727302, 2021.
Article in English | MEDLINE | ID: mdl-34421977

ABSTRACT

Pre-harvest sprouting (PHS) is one of the primary problems associated with seed dormancy in rice (Oryza sativa L.). It causes yield loss and reduces grain quality under unpredictable humid conditions at the ripening stage, thus affecting the economic value of the rice crop. To resolve this issue, understanding the molecular mechanism underlying seed dormancy in rice is important. Recent studies have shown that seed dormancy is affected by a large number of genes associated with plant hormone regulation. However, understanding regarding the effect of heat stress on seed dormancy and plant hormones is limited. This study compared the transcriptome and small RNAome of the seed embryo and endosperm of two contrasting japonica rice accessions, PHS susceptible (with low seed dormancy) and PHS resistant (with high seed dormancy), at three different maturation stages. We found that 9,068 genes and 35 microRNAs (miRNAs) were differentially expressed in the embryo, whereas 360 genes were differentially expressed in the endosperm. Furthermore, we identified and verified the candidate genes associated with seed dormancy and heat stress-related responses in rice using quantitative real-time PCR. We newly discovered eight hormone-related genes, four heat shock protein-related genes, and two miRNAs potentially involved in PHS. These findings provide a strong foundation for understanding the dynamics of transcriptome and small RNAome of hormone- and heat stress-related genes, which affect PHS during seed maturation.

6.
Int J Mol Sci ; 22(6)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33806722

ABSTRACT

Auxins play an essential role in regulating plant growth and adaptation to abiotic stresses, such as nutrient stress. Our current understanding of auxins is based almost entirely on the results of research on the eudicot Arabidopsis thaliana, however, the role of the rice PIN-FORMED (PIN) auxin efflux carriers in the regulation of the ammonium-dependent response remains elusive. Here, we analyzed the expression patterns in various organs/tissues and the ammonium-dependent response of rice PIN-family genes (OsPIN genes) via qRT-PCR, and attempted to elucidate the relationship between nitrogen (N) utilization and auxin transporters. To investigate auxin distribution under ammonium-dependent response after N deficiency in rice roots, we used DR5::VENUS reporter lines that retained a highly active synthetic auxin response. Subsequently, we confirmed that ammonium supplementation reduced the DR5::VENUS signal compared with that observed in the N-deficient condition. These results are consistent with the decreased expression patterns of almost all OsPIN genes in the presence of the ammonium-dependent response to N deficiency. Furthermore, the ospin1b mutant showed an insensitive phenotype in the ammonium-dependent response to N deficiency and disturbances in the regulation of several N-assimilation genes. These molecular and physiological findings suggest that auxin is involved in the ammonium assimilation process of rice, which is a model crop plant.


Subject(s)
Indoleacetic Acids/metabolism , Oryza/physiology , Plant Development , Plant Proteins/genetics , Plant Proteins/metabolism , Ammonium Compounds/metabolism , Biological Transport , Fertilizers , Gene Expression Profiling , Gene Expression Regulation, Plant , Multigene Family , Mutation , Nitrogen/metabolism , Organ Specificity , Plant Development/genetics , Plant Roots/growth & development , Quantitative Trait, Heritable , Seedlings/genetics , Seedlings/growth & development
7.
Plant J ; 104(2): 532-545, 2020 10.
Article in English | MEDLINE | ID: mdl-32652789

ABSTRACT

Rice (Oryza sativa L.) is a staple crop with agricultural traits that have been intensively investigated. However, despite the variety of mutant population and multi-omics data that have been generated, rice functional genomic research has been bottlenecked due to the functional redundancy in the genome. This phenomenon has masked the phenotypes of knockout mutants by functional compensation and redundancy. Here, we present an intuitive tool, CRISPR applicable functional redundancy inspector to accelerate functional genomics in rice (CAFRI-Rice; cafri-rice.khu.ac.kr). To create this tool, we generated a phylogenetic heatmap that can estimate the similarity between protein sequences and expression patterns, based on 2,617 phylogenetic trees and eight tissue RNA-sequencing datasets. In this study, 33,483 genes were sorted into 2,617 families, and about 24,980 genes were tested for functional redundancy using a phylogenetic heatmap approach. It was predicted that 7,075 genes would have functional redundancy, according to the threshold value validated by an analysis of 111 known genes functionally characterized using knockout mutants and 5,170 duplicated genes. In addition, our analysis demonstrated that an anther/pollen-preferred gene cluster has more functional redundancy than other clusters. Finally, we showed the usefulness of the CAFRI-Rice-based approach by overcoming the functional redundancy between two root-preferred genes via loss-of-function analyses as well as confirming the functional dominancy of three genes through a literature search. This CAFRI-Rice-based target selection for CRISPR/Cas9-mediated mutagenesis will not only accelerate functional genomic studies in rice but can also be straightforwardly expanded to other plant species.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Genomics/methods , Oryza/genetics , Plant Proteins/genetics , Software , Data Visualization , Gene Duplication , Genome, Plant , Multigene Family , Mutagenesis , Oryza/growth & development , Phylogeny , Plant Proteins/metabolism , Plants, Genetically Modified , Pollination
8.
Plants (Basel) ; 9(1)2020 Jan 18.
Article in English | MEDLINE | ID: mdl-31963727

ABSTRACT

Promoters are key components for the application of biotechnological techniques in crop plants. Reporter genes such as GUS or GFP have been used to test the activity of promoters for diverse applications. A huge number of T-DNAs carrying promoterless GUS near their right borders have been inserted into the rice genome, and 105,739 flanking sequence tags from rice lines with this T-DNA insertion have been identified, establishing potential promoter trap lines for 20,899 out of 55,986 genes in the rice genome. Anatomical meta-expression data and information on abiotic stress related to these promoter trap lines enable us to quickly identify new promoters associated with various expression patterns. In the present report, we introduce a strategy to identify new promoters in a very short period of time using a combination of meta-expression analysis and promoter trap lines.

9.
Front Plant Sci ; 11: 585561, 2020.
Article in English | MEDLINE | ID: mdl-33424882

ABSTRACT

The fine-tuning of inorganic phosphate (Pi) for enhanced use efficiency has long been a challenging subject in agriculture, particularly in regard to rice as a major crop plant. Among ribonucleases (RNases), the RNase T2 family is broadly distributed across kingdoms, but little has been known on its substrate specificity compared to RNase A and RNase T1 families. Class I and class II of the RNase T2 family are defined as the S-like RNase (RNS) family and have showed the connection to Pi recycling in Arabidopsis. In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. We then compared the in silico expression patterns of all RNS genes in rice and Arabidopsis under normal and Pi-deficient conditions and further confirmed the expression patterns of rice RNS genes via qRT-PCR analysis. Subsequently, we found that most of the OsRNS genes were differentially regulated under Pi-deficient treatment. Association of Pi recycling by RNase activity in rice was confirmed by measuring total RNA concentration and ribonuclease activity of shoot and root samples under Pi-sufficient or Pi-deficient treatment during 21 days. The total RNA concentrations were decreased by < 60% in shoots and < 80% in roots under Pi starvation, respectively, while ribonuclease activity increased correspondingly. We further elucidate the signaling pathway of Pi starvation through upregulation of the OsRNS genes. The 2-kb promoter region of all OsRNS genes with inducible expression patterns under Pi deficiency contains a high frequency of P1BS cis-acting regulatory element (CRE) known as the OsPHR2 binding site, suggesting that the OsRNS family is likely to be controlled by OsPHR2. Finally, the dynamic transcriptional regulation of OsRNS genes by overexpression of OsPHR2, ospho2 mutant, and overexpression of OsPT1 lines involved in Pi signaling pathway suggests the molecular basis of OsRNS family in Pi recycling via RNA decay under Pi starvation.

10.
Genes Genomics ; 42(1): 67-76, 2020 01.
Article in English | MEDLINE | ID: mdl-31736007

ABSTRACT

BACKGROUND: Phenylalanine ammonia-lyase (PAL) catalyzes the first step in the biosynthetic phenylpropanoid pathway (PPP) via deamination of phenylalanine to trans-cinnamic acid, a precursor for the lignin and flavonoid biosynthetic pathways. Although its role is well-established in various plants, the functional significance of PAL genes in rice remains poorly understood. OBJECTIVE: This study aims to find out the global feature of rice PAL genes associated with phosphate use efficiency. METHODS: To identify the biological functions of individual rice PAL genes, we performed meta-expression profiling analysis based on phylogenomics of rice PAL genes and confirmed the expression patterns using Quantitative real-time PCR (qPCR). RESULTS: We identified nine genes that were remarkably up-regulated during long-term phosphate (Pi) starvation and recovery processes through RNA-Seq data analysis. Expression patterns of the nine rice PAL genes under Pi starvation were further confirmed by qPCR, indicating that the function of PAL genes is strongly associated with Pi starvation response in rice. CONCLUSION: Our study reports the functional significance of rice PAL genes involved in adaptation to low Pi growth conditions and provides useful information to improve Pi use efficiency in crop plant.


Subject(s)
Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Oryza/enzymology , Phenylalanine Ammonia-Lyase/metabolism , Phosphates/deficiency , Plant Proteins/metabolism , Oryza/genetics , Oryza/growth & development , Phenylalanine Ammonia-Lyase/genetics , Phylogeny , Plant Proteins/genetics , Promoter Regions, Genetic
11.
Plant Physiol ; 179(2): 558-568, 2019 02.
Article in English | MEDLINE | ID: mdl-30545904

ABSTRACT

Root hairs are important for absorption of nutrients and water from the rhizosphere. The Root Hair Defective-Six Like (RSL) Class II family of transcription factors is expressed preferentially in root hairs and has a conserved role in root hair development in land plants. We functionally characterized the seven members of the RSL Class II subfamily in the rice (Oryza sativa) genome. In root hairs, six of these genes were preferentially expressed and four were strongly expressed. Phenotypic analysis of each mutant revealed that Os07g39940 plays a major role in root hair formation, based on observations of a short root hair phenotype in those mutants. Overexpression (OX) for each of four family members in rice resulted in an increase in the density and length of root hairs. These four members contain a transcription activation domain and are targeted to the nucleus. They interact with rice Root Hairless1 (OsRHL1), a key regulator of root hair development. When heterologously expressed in epidermal cells of Nicotiana benthamiana leaves, OsRHL1 was predominantly localized to the cytoplasm. When coexpressed with each of the four RSL Class II members, however, OsRLH1 was translocated to the nucleus. Transcriptome analysis using Os07g39940-OX plants revealed that 86 genes, including Class III peroxidases, were highly up-regulated. Furthermore, reactive oxygen species levels in the root hairs were increased in Os07g39940-OX plants but were drastically reduced in the os07g39940 and rhl1 mutants. Our results demonstrate that RSL Class II members function as essential regulators of root hair development in rice.


Subject(s)
Cell Nucleus/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Plant Roots/growth & development , Transcription Factors/metabolism , Cell Nucleus/genetics , Cytoplasm/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Mutation , Oryza/genetics , Oryza/growth & development , Plant Epidermis/genetics , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified , Protein Transport , Reactive Oxygen Species/metabolism
12.
J Plant Physiol ; 220: 11-23, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29132026

ABSTRACT

Plant root systems play essential roles in developmental processes, such as the absorption of water and inorganic nutrients, and structural support. Gene expression is affected by growth conditions and the genetic background of plants. To identify highly conserved root-preferred genes in rice across diverse growth conditions and varieties, we used two independent meta-anatomical expression profiles based on a large collection of Affymetrix and Agilent 44K microarray data sets available for public use. We then identified 684 loci with root-preferred expression, which were validated with in silico analysis using both meta-expression profiles. The expression patterns of four candidate genes were confirmed in vivo by monitoring expression of ß-glucuronidase under control of the candidate-gene promoters, providing new tools to manipulate agronomic traits associated with roots. We also utilized real-time PCR to examine the root-preferential expression of 14 genes across four rice varieties, including japonica and indica cultivars. Using a database of rice genes with known functions, we identified the reported functions of 39 out of the 684 candidate genes. Sixteen genes are directly involved in root development, while the remaining are involved in processes indirectly related to root development (i.e., soil-stress tolerance or growth retardation). This indicates the importance of our candidate genes for studies on root development and function. Gene ontology enrichment analysis in the 'biological processes' category revealed that root-preferred genes in rice are closely associated with nutrient transport-related genes, indicating that the primary role of roots is the uptake of nutrients from soil. In addition, predicted protein-protein interaction analysis suggested a molecular network for root development composed of 215 interactions associated with 44 root-preferred or root development-related genes. Taken together, our data provide an important foundation for future research on root development in rice.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant , Oryza/genetics , Plant Proteins/genetics , Plant Roots/metabolism , Gene Expression Profiling , Oryza/metabolism , Plant Proteins/metabolism , Real-Time Polymerase Chain Reaction
13.
Front Plant Sci ; 8: 1120, 2017.
Article in English | MEDLINE | ID: mdl-28713404

ABSTRACT

Cold stress is very detrimental to crop production. However, only a few genes in rice have been identified with known functions related to cold tolerance. To meet this agronomic challenge more effectively, researchers must take global approaches to select useful candidate genes and find the major regulatory factors. We used five Gene expression omnibus series data series of Affymetrix array data, produced with cold stress-treated samples from the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/), and identified 502 cold-inducible genes common to both japonica and indica rice cultivars. From them, we confirmed that the expression of two randomly chosen genes was increased by cold stress in planta. In addition, overexpression of OsWRKY71 enhanced cold tolerance in 'Dongjin,' the tested japonica cultivar. Comparisons between japonica and indica rice, based on calculations of plant survival rates and chlorophyll fluorescence, confirmed that the japonica rice was more cold-tolerant. Gene Ontology enrichment analysis indicate that the 'L-phenylalanine catabolic process,' within the Biological Process category, was the most highly overrepresented under cold-stress conditions, implying its significance in that response in rice. MapMan analysis classified 'Major Metabolic' processes and 'Regulatory Gene Modules' as two other major determinants of the cold-stress response and suggested several key cis-regulatory elements. Based on these results, we proposed a model that includes a pathway for cold stress-responsive signaling. Results from our functional analysis of the main signal transduction and transcription regulation factors identified in that pathway will provide insight into novel regulatory metabolism(s), as well as a foundation by which we can develop crop plants with enhanced cold tolerance.

14.
Rice (N Y) ; 10(1): 30, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28647924

ABSTRACT

BACKGROUND: Peroxiredoxins (PRXs) have recently been identified as plant antioxidants. Completion of various genome sequencing projects has provided genome-wide information about PRX genes in major plant species. Two of these -- Oryza sativa (rice) and Arabidopsis -- each have 10 PRX members. Although significant progress has been made in understanding their biological roles in Arabidopsis, those functions in rice, a model crop plant, have not been well studied. RESULTS: We performed a comparative expression analysis of rice and Arabidopsis PRXs. Our phylogenetic analysis revealed that one subgroup contains three rice and three Arabidopsis Type-II PRXs that are expressed ubiquitously. This suggests that they are involved in housekeeping functions to process reactive oxygen species (ROS). Within the second subgroup, expression of Os1-CysPrxA (LOC_Os7g44430) and AtOs1-CysPrx is conserved in seeds while Os1-CysPrxB (LOC_Os7g44440) shows a root-preferential pattern of expression. We used transgenic plants expressing the GUS reporter gene under the control of the promoters of these two tandem duplicates to confirm their meta-expression patterns. Our GUS expression data from developing seeds and those that were germinating indicated that Os1-CysPrxB is involved in root development, as initiated from the embryo, while Os1-CysPrxA has roles in regulating endosperm development near the aleurone layer. For the third and fourth subgroups, the rice PRXs are more likely to show leaf/shoot-preferential expression, while those from Arabidopsis are significantly expressed in the flowers and seeds in addition to the leaf/shoot. To determine the biological meaning of those expression patterns that were dominantly identified in rice PRXs, we analyzed three rice genes showing leaf/shoot-preferential expression in a mutant of the light-responsive 1-deoxy-D-xylulose 5-phosphate reductoisomerase (dxr) gene and found that two of them were significantly down-regulated in the mutant. CONCLUSION: A global expression analysis of the PRX family in rice identified tandem duplicates, Os1-CysPrxA and Os1-CysPrxB, in the 1-CysPrx subgroup that are differentially expressed in developing seeds and germinating seeds. Analysis of the cis-acting regulatory elements (CREs) revealed unique CREs responsible for embryo and root or endosperm-preferential expression. In addition, the presence of leaf/shoot-preferential PRXs in rice suggests that they are required in that crop because those plants must tolerate a higher light intensity in their normal growth environment when compared with that of Arabidopsis. Downregulation of two PRXs in the dxr mutant causing an albino phenotype, implying that those genes have roles in processing ROS produced during photosynthesis. Network analysis of four PRXs allowed us to model regulatory pathways that explain the underlying protein interaction network. This will be a useful hypothetical model for further study.

15.
Front Plant Sci ; 8: 580, 2017.
Article in English | MEDLINE | ID: mdl-28491065

ABSTRACT

Water deficiencies are one of the most serious challenges to crop productivity. To improve our understanding of soil moisture stress, we performed RNA-Seq analysis using roots from 4-week-old rice seedlings grown in soil that had been subjected to drought conditions for 2-3 d. In all, 1,098 genes were up-regulated in response to soil moisture stress for 3 d, which causes severe damage in root development after recovery, unlikely that of 2 d. Comparison with previous transcriptome data produced in drought condition indicated that more than 68% of our candidate genes were not previously identified, emphasizing the novelty of our transcriptome analysis for drought response in soil condition. We then validated the expression patterns of two candidate genes using a promoter-GUS reporter system in planta and monitored the stress response with novel molecular markers. An integrating omics tool, MapMan analysis, indicated that RING box E3 ligases in the ubiquitin-proteasome pathways are significantly stimulated by induced drought. We also analyzed the functions of 66 candidate genes that have been functionally investigated previously, suggesting the primary roles of our candidate genes in resistance or tolerance relating traits including drought tolerance (29 genes) through literature searches besides diverse regulatory roles of our candidate genes for morphological traits (15 genes) or physiological traits (22 genes). Of these, we used a T-DNA insertional mutant of rice phytochrome B (OsPhyB) that negatively regulates a plant's degree of tolerance to water deficiencies through the control of total leaf area and stomatal density based on previous finding. Unlike previous result, we found that OsPhyB represses the activity of ascorbate peroxidase and catalase mediating reactive oxygen species (ROS) processing machinery required for drought tolerance of roots in soil condition, suggesting the potential significance of remaining uncharacterized candidate genes for manipulating drought tolerance in rice.

SELECTION OF CITATIONS
SEARCH DETAIL
...