Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Biol Trace Elem Res ; 199(10): 3772-3780, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33394308

ABSTRACT

Arsenic (As) is an environmental pollutant with destructive effects on different body organs, including the testis. This work was aimed to assess the ameliorative role of caffeic acid (CA) against As-provoked testicular damage in mice. Twenty-four adult male mice (31 ± 9 g) were randomly allocated to four equal groups. The first group served as control and was provided basal diet and tap water. Animals in the second group received water containing 200 ppm arsenite. The third group of mice received CA (60 mg/kg body weight; i.p.) during exposure to arsenite. Animals in the fourth group received CA. At the end of the experiment period (21 days), blood and testicular tissue sampling was done for biochemical and histopathological assessments. The results showed a significant decline of testicular ferric reducing antioxidant power (FRAP), superoxide dismutase, and glutathione peroxidase (GPx), as well as plasma concentrations of testosterone and dihydrotestosterone in As-treated mice compared to controls (p < 0.05). A significant increase in testicular malondialdehyde was also detected in group 2 relative to controls. Moreover, As exposure resulted in some morphological and histopathological alterations of the testis, including hyperemia, reduced tubular diameter and thickness of epithelial cell layers of seminiferous tubules, and Leydig cell necrosis. Simultaneous administration of CA plus As increased GPx, FRAP, testosterone, and dihydrotestosterone amounts and attenuated MDA levels as well as histopathological alterations to the levels that were not significantly different from those of the control group. These results indicate that caffeic acid can be suggested as an alleviative natural compound against As-induced damage in mice testes.


Subject(s)
Arsenic , Animals , Antioxidants/metabolism , Arsenic/metabolism , Arsenic/toxicity , Caffeic Acids/pharmacology , Male , Malondialdehyde/metabolism , Mice , Oxidative Stress , Testis/metabolism
2.
Jundishapur J Nat Pharm Prod ; 8(1): 27-33, 2013.
Article in English | MEDLINE | ID: mdl-24624183

ABSTRACT

BACKGROUND: Chitosan is a naturally occurring biopolymer which has been widely used in a variety of biomedical applications including local antibiotic delivery due to its excellent mechanical properties, biodegradability and biocompatibility. Beads are spherical, porous carriers which are prepared from various materials including chitosan. OBJECTIVES: The current study aimed to fabricate a new controlled delivery system for local anti-infective treatment and to study its release behavior. MATERIALS AND METHODS: Twenty beads were prepared from 1% or 2% chitosan solutions and immersed in vancomycin (VM) or teicoplanin (TN) solutions. The antibiotic release kinetics was determined by linear regression analysis supposing first order kinetics. RESULTS: Immersion for 3 h resulted in significant increase in the total TN release that differed from 0.5 h of immersion, except for the 1% beads immersed in VM. Increasing the chitosan concentration significantly increased the total release and antibiotic load of beads. The release of TN was more delayed compared to that of VM, which allowed a gradual release beyond 3 days. The half-life (mean ± SEM) of both types of TN-containing beads was significantly extended for 3 h immersion in comparison to 0.5 h immersion (26.1 ± 5.9 vs 10.9 ± 1.0 and 17.0 ± 2.1 vs 5.1 ± 1.9; P < 0.001). However, neither increasing the chitosan concentration, nor immersion time did result in any significant increase in the release of VM. CONCLUSIONS: The current study demonstrated an improved control of TN release impregnated in beads. It can be concluded that chitosan beads might be considered as a novel carrier for TN delivery to infected bone for local anti-infective therapy.

3.
Cytotechnology ; 56(3): 179-85, 2008 Mar.
Article in English | MEDLINE | ID: mdl-19002856

ABSTRACT

Allium hirtifolim (Persian Shallot) belongs to Allium genus (Alliaceae family). We investigated the in vitro effects of chloroformic extract of A. hirtifolium and its Allicin on the proliferation of HeLa (cervical cancer), MCF7 (human, caucasion, breast, adenocarcinoma) and L929 (mouse, C3H/An, connective) cell lines. Our results showed that components of A. hirtifolium might inhibit proliferation of tumor cell lines. This inhibition in HeLa and MCF-7 cells was dose-dependent. The presence of Allicin was evaluated by TLC method in bulbs and the extract of A. hirtifolium was analyzed by HPLC. MTT test was performed 24, 48 and 72 h after cell culture. A significant decrease in cell lines was observed in HeLa and MCF-7 as compared to L929 cell lines. DNA fragmentation analysis revealed a large number of apoptotic cells in treated HeLa and MCF-7 cell groups, but no effects in L929 cells. Therefore A. hirtifolium might be a candidate for tumor suppression.

SELECTION OF CITATIONS
SEARCH DETAIL
...