Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Microsc ; 226(Pt 3): 244-55, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17535263

ABSTRACT

A semi-automated imaging system is described to quantitate estrogen and progesterone receptor immunoreactivity in human breast cancer. The system works for any conventional method of image acquisition using microscopic slides that have been processed for immunohistochemical analysis of the estrogen receptor and progesterone receptor. Estrogen receptor and progesterone receptor immunohistochemical staining produce colorimetric differences in nuclear staining that conventionally have been interpreted manually by pathologists and expressed as percentage of positive tumoral nuclei. The estrogen receptor and progesterone receptor status of human breast cancer represent important prognostic and predictive markers of human breast cancer that dictate therapeutic decisions but their subjective interpretation result in interobserver, intraobserver and fatigue variability. Subjective measurements are traditionally limited to a determination of percentage of tumoral nuclei that show positive immunoreactivity. To address these limitations, imaging algorithms utilizing both colorimetric (RGB) as well as intensity (gray scale) determinations were used to analyze pixels of the acquired image. Image acquisition utilized either scanner or microscope with attached digital or analogue camera capable of producing images with a resolution of 20 pixels /10 mu. Areas of each image were screened and the area of interest richest in tumour cells manually selected for image processing. Images were processed initially by JPG conversion of SVS scanned virtual slides or direct JPG photomicrograph capture. Following image acquisition, images were screened for quality, enhanced and processed. The algorithm-based values for estrogen receptor and progesterone receptor percentage nuclear positivity both strongly correlated with the subjective measurements (intraclass correlation: 0.77; 95% confidence interval: 0.59, 0.95) yet exhibited no interobserver, intraobserver or fatigue variability. In addition the algorithms provided measurements of nuclear estrogen receptor and progesterone receptor staining intensity (mean, mode and median staining intensity of positive staining nuclei), parameters that subjective review could not assess. Other semi-automated image analysis systems have been used to measure estrogen receptor and progesterone receptor immunoreactivity but these either have required proprietary hardware or have been based on luminosity differences alone. By contrast our algorithms were independent of proprietary hardware and were based on not just luminosity and colour but also many other imaging features including epithelial pattern recognition and nuclear morphology. These features provide a more accurate, versatile and robust imaging analysis platform that can be fully automated in the near future. Because of all these properties, our semi-automated imaging system 'adds value' as a means of measuring these important nuclear biomarkers of human breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Diagnostic Imaging/methods , Immunohistochemistry/methods , Receptors, Estrogen/analysis , Receptors, Estrogen/immunology , Receptors, Progesterone/analysis , Receptors, Progesterone/immunology , Algorithms , Automation , Humans , Immunohistochemistry/instrumentation , Software
2.
J Agric Food Chem ; 49(2): 687-91, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11262013

ABSTRACT

Changes in aroma and coloring properties of saffron (Crocus sativus) after gamma-irradiation at doses of 2.5 and 5 kGy (necessary for microbial decontamination) were investigated. The volatile essential oil constituents responsible for aroma of the spice were isolated by steam distillation and then subsequently analyzed by gas chromatography/mass spectrometry (GC/MS). No significant qualitative changes were observed in these constituents upon irradiation, although a trained sensory panel could detect slight quality deterioration at a dose of 5 kGy. Carotene glucosides that impart color to the spice were isolated by solvent extraction and then subjected to thin-layer chromatography and high-performance liquid chromatography (HPLC). Fractionation of the above pigments into aglycon and glucosides was achieved by using ethyl acetate and n-butanol, respectively. Analysis of these fractions by HPLC revealed a decrease in glucosides and an increase in aglycon content in irradiated samples. The possibility of degradation of pigments during gamma irradiation is discussed.


Subject(s)
Food Irradiation/methods , Gamma Rays , Liliaceae/radiation effects , Spices/radiation effects , 1-Butanol/analysis , Acetates/analysis , Chromatography, High Pressure Liquid , Chromatography, Thin Layer , Color , Flavoring Agents/analysis , Food Microbiology , Gas Chromatography-Mass Spectrometry/methods , Liliaceae/microbiology , Odorants
SELECTION OF CITATIONS
SEARCH DETAIL
...