Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 452: 139591, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38761631

ABSTRACT

This work aimed to enhance hemp seed oil encapsulation within a hemp seed protein-alginate complex by optimizing parameters in the solution-enhanced dispersion process, employing supercritical carbon dioxide (SEDS) without reliance on organic solvents or elevated temperatures. By response surface methodology (RSM), the microencapsulation efficacy (MEE), particle size (PS) and peroxide value (PV) was determined with respect to three parameters; temperature (°C), pressure (bar) and feed flow rate (mL/min). The optimum conditions were predicted at temperature (40 °C), pressure (150 bar) and feed flow rate (2 mL/min) to offer an MEE of 89.47%, PS of 7.81 µm and PV of 2.91 (meq/kg oil). In addition, the SEDS method was compared with spray- and freeze-drying for encapsulating hemp seed oil. The findings demonstrated SEDS' superiority, exhibiting exceptional attributes such as the highest MEE, smallest PS and the production of spherical, smooth microcapsules. This highlights its effectiveness in comparison to spray- and freeze-drying methods.


Subject(s)
Cannabis , Capsules , Carbon Dioxide , Drug Compounding , Particle Size , Seeds , Capsules/chemistry , Carbon Dioxide/chemistry , Cannabis/chemistry , Drug Compounding/methods , Seeds/chemistry , Biopolymers/chemistry , Plant Oils/chemistry
2.
Chem Cent J ; 11(1): 44, 2017 May 26.
Article in English | MEDLINE | ID: mdl-29086827

ABSTRACT

BACKGROUND: Developing an efficient lipophilization reaction system for phenolic derivatives could enhance their applications in food processing. Low solubility of phenolic acids reduces the efficiency of phenolic derivatives in most benign enzyme solvents. The conversion of phenolic acids through esterification alters their solubility and enhances their use as food antioxidant additives as well as their application in cosmetics. RESULTS: This study has shown that lipase-catalyzed esterification of dihydrocaffeic acid with hexanol in ionic liquid (1-butyl-3-methylimidazoliumbis (trifluoromethylsulfonyl) imide) was the best approach for esterification reaction. In order to achieve the maximum yield, the process was optimized by response surface methodology (RSM) based on a five-level and four independent variables such as: dosage of enzyme; hexanol/dihydrocaffeic acid mole ratio; temperature and reaction time. The optimum esterification condition (Y = 84.4%) was predicted to be obtained at temperature of 39.4 °C, time of 77.5 h dosage of enzyme at 41.6% and hexanol/dihydrocaffeic acid mole ratio of 2.1. CONCLUSION: Finally, this study has produced an efficient enzymatic esterification method for the preparation of hexyl dihydrocaffeate in vitro using a lipase in an ionic liquid system. Concentration of hexanol was the most significant (p < 0.05) independent variable that influenced the yield of hexyl dihydrocaffeate. Graphical abstract Synthesis of different Hexyl dihydrocaffeates in ionic liquid.

3.
Food Chem ; 224: 365-371, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28159281

ABSTRACT

The solubility limitations of phenolic acids in many lipidic environments are now greatly improved by their enzymatic esterification in ionic liquids (ILs). Herein, four different ILs were tested for the esterification of dihydrocaffeic acid with hexanol and the best IL was selected for the synthesis of four other n-alkyl esters with different chain-lengths. The effect of alkyl chain length on the anti-oxidative properties of the resulted purified esters was investigated using ß-carotene bleaching (BCB) and free radical scavenging method DPPH and compared with butylated hydroxytoluene (BHT) as reference compound. All four esters (methyl, hexyl, dodecyl and octadecyl dihydrocaffeates) exhibited relatively strong radical scavenging abilities. The scavenging activity of the test compounds was in the following order: methyl ester>hexyl ester⩾dodecyl ester>octadecyl ester>BHT while the order for the BCB anti-oxidative activity was; BHT>octadecyl ester>dodecyl ester>hexyl ester>methyl ester.


Subject(s)
Antioxidants/chemistry , Caffeic Acids/chemistry , Ions/chemistry , Lipase/metabolism , Butylated Hydroxytoluene/chemistry , Catalysis , Esterification , Hydroxybenzoates/chemistry , beta Carotene/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...