Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 1889: 169-183, 2019.
Article in English | MEDLINE | ID: mdl-30367414

ABSTRACT

Skeletal muscle tissue engineering aims at creating functional skeletal muscle in vitro. Human muscle organoids can be used for potential applications in regenerative medicine, but also as an in vitro model for myogenesis or myopathology. However, the thickness of constructs is limited due to passive diffusion of nutrients and oxygen. Introduction of a vascular network in vitro may solve this limitation. Here, we describe tissue engineering of in vitro skeletal muscle consisting of human aligned myofibers with interspersed endothelial networks. To create bio-artificial muscle (BAM), human muscle progenitor cells are cocultured with human umbilical vein endothelial cells (HUVECs) in a fibrin hydrogel. The cell-gel mix is cast into silicone molds with end attachment sites and cultured in endothelial growth medium (EGM-2) for 1 week. The passive forces generated in the contracted hydrogel align the myogenic cells parallel to the long axis of the contracted gel such that they fuse into aligned multinucleated myofibers. This results in the formation of a 2 cm long and ~1.5 mm tick human BAM construct with endothelial networks.


Subject(s)
Coculture Techniques , Endothelial Cells/metabolism , Muscle, Skeletal/metabolism , Tissue Engineering , Biopsy , Cells, Cultured , Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Muscle Development , Muscle, Skeletal/cytology , Myoblasts/cytology , Myoblasts/metabolism
2.
Tissue Eng Part A ; 21(19-20): 2548-58, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26177063

ABSTRACT

The size of in vitro engineered skeletal muscle tissue is limited due to the lack of a vascular network in vitro. In this article, we report tissue-engineered skeletal muscle consisting of human aligned myofibers with interspersed endothelial networks. We extend our bioartificial muscle (BAM) model by coculturing human muscle progenitor cells with human umbilical vein endothelial cells (HUVECs) in a fibrin extracellular matrix (ECM). First, the optimal medium conditions for coculturing myoblasts with HUVECs were determined in a fusion assay. Endothelial growth medium proved to be the best compromise for the coculture, without affecting the myoblast fusion index. Second, both cell types were cocultured in a BAM maintained under tension to stimulate myofiber alignment. We then tested different total cell numbers containing 50% HUVECs and found that BAMs with a total cell number of 2 × 10(6) resulted in well-aligned and densely packed myofibers while allowing for improved interspersed endothelial network formation. Third, we compared different myoblast-HUVEC ratios. Including higher numbers of myoblasts improved endothelial network formation at lower total cell density; however, improvement of network characteristics reached a plateau when 1 × 10(6) or more myoblasts were present. Finally, addition of Matrigel to the fibrin ECM did not enhance overall myofiber and endothelial network formation. Therefore, in our BAM model, we suggest the use of a fibrin extracellular matrix containing 2 × 10(6) cells of which 50-70% are muscle cells. Optimizing these coculture conditions allows for a physiologically more relevant muscle model and paves the way toward engineering of larger in vitro muscle constructs.


Subject(s)
Coculture Techniques/methods , Muscle, Skeletal/cytology , Tissue Engineering/methods , Cells, Cultured , Extracellular Matrix/chemistry , Fibrin/chemistry , Human Umbilical Vein Endothelial Cells/cytology , Humans , Immunohistochemistry , Myoblasts, Skeletal/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...