Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124377, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38701580

ABSTRACT

Tryptophan (Trp) residue provides characteristic vibrational markers to the middle wavenumber spectral region of the Raman spectra recorded from peptides and proteins. In this report, we were particularly interested in eight Trp Raman markers, referred to as Wi (i = 1,…,8). All responsible for pronounced Raman lines, these markers originate from indole moiety, a bicyclic conjugated segment involved in the Trp structure. Numerous investigations have previously attempted to relate the variations observed in the spectral features of these markers to the environmental changes of Trp residues. To emphasize the most important points we can mention (i) the variations in the Raman profile of W4 (∼1360 cm-1) and W5 (∼1340 cm-1), frequently observed as a doublet with variable intensity ratio. These two markers were thought to result from a Fermi-resonance effect between certain planar and nonplanar modes; (ii) the changes observed in the wavenumbers and relative intensities of W4, W7 (∼880 cm-1) and W8 (∼760 cm-1) were supposed to be related to the accessibility of Trp to surrounding water molecules; and (iii) the wavenumber fluctuations of W3 (∼1550 cm-1), taken as a Trp side chain orientational marker. However, some ambiguities still exist regarding the interpretation of these markers, needing further clarification. Herein, upon a joint experimental and theoretical analysis based on a multiconformational approach, attention was paid to the relationships between structural and vibrational features of three indole-containing compounds with increasing structural complexity, i.e., skatole (3-methylindole), tryptophan, and tripeptide Gly-Trp-Gly. This study clearly shows that the existing assignments given to certain Trp Raman markers should be reconsidered, especially those based on the Fermi-resonance origin of W4-W5 (∼1360-1340 cm-1) doublet, as well as the purely environmental dependence of W7 and W8 markers.


Subject(s)
Spectrum Analysis, Raman , Tryptophan , Vibration , Tryptophan/chemistry , Tryptophan/analysis , Spectrum Analysis, Raman/methods , Molecular Conformation , Indoles/chemistry
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123681, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38039641

ABSTRACT

Tyrosine (Tyr) residue in a peptide chain is characterized by the presence of seven Raman markers, referred to as Yi (i = 1, …, 7), distributed over the middle wavenumber spectral region. Particularly, the changes observed in the relative intensity of Y5 and Y6 markers, appearing as a side by side doublet at ca. 850-830 cm-1, has received a great attention. Primarily assigned to a Fermi-resonance effect between phenol ring planar and nonplanar modes, former density functional theory calculations led us to affiliate the Y5-Y6 doublet to two distinct fundamental modes. Furthermore, despite the previous assumptions, it was evidenced that the reversal of the doublet intensity ratio cannot be solely explained by hydrogen bonding on the phenol hydroxyl group involved in Tyr. Herein, upon analyzing the observed and theoretical data collected from the cationic species of the tripeptide Gly-Tyr-Gly, the crucial effect of the aromatic side chain orientation, especially that of the χ1 torsion angle defined around the CαCß bond, on the Tyr doublet intensity ratio has been evidenced.

3.
J Mol Graph Model ; 102: 107790, 2021 01.
Article in English | MEDLINE | ID: mdl-33181423

ABSTRACT

During the last two decades, numerous observed data obtained by various physical techniques, also supported by molecular modeling approaches, have highlighted the structuring features of tripeptides, as well as their aggregation properties. Herein, we focus on the structural dynamics of four trimers, i.e., Gly-Gly-Gly, Gly-Ala-Gly, Ala-Ala-Ala and Ala-Phe-Ala, in an aqueous environment. Density functional theory calculations (DFT) were carried out to assess the stability of four types of secondary structures, i.e., ß-strand, polyproline-II (pP-II), α-helix and γ-turn, of which the formation had been described in these tripeptides. Both implicit and explicit hydration effects were analyzed on the conformational and energetic features of trimers. It has been shown that the use of M062X functional (versus B3LYP) improve the stability of intramolecular H-bonds, especially in inverse γ-turn structures, as well as the energetic and conformational equilibrium in all tripeptides. Explicit hydration reflected by the presence of five water molecules around the backbone polar sites (NH3+, N-H, CO and NH2) considerably changes the conformational landscapes of the trimers. Characteristic intramolecular and intermolecular interactions evidenced by the calculations, were emphasized.


Subject(s)
Water , Models, Molecular , Protein Conformation , Protein Structure, Secondary
4.
J Comput Chem ; 41(14): 1402-1410, 2020 05 30.
Article in English | MEDLINE | ID: mdl-32109325

ABSTRACT

Anionic species of aspartic acid, Asp- , having a zwitterionic backbone and a deprotonated side chain, appears to be a good example for analyzing dipole-ion and ion pair interactions. Density functional theory calculations were herein performed to investigate the low energy conformers of Asp- embedded in a dielectric continuum modeling an aqueous environment, through a scan of the potential energy as a function of the side chain (χ1 , χ2 ) torsion angles. The most energetically favorable conformers having g+ g- and g- g+ side chain orientations are found to be stabilized by charge-enhanced intramolecular H-bonding involving the positively charged ( NH3+ ) and the two negatively charged (COO- ) groups. These conformers were further used to analyze Asp- + nW clusters (W: water, n = 1 or 3), and Asp- /Asp- pair formation. COO- groups were found to be the most attractive sites for hosting a water molecule (binding energy: -6.0 ± 1.5 kcal/mol), compared to NH3+ groups (binding energy: -4.7 ± 1.1 kcal/mol). Energy separation between g+ g- and g- g+ conformers increases upon explicit hydration. Asp- /Asp- ion pairs, stabilized by the interaction between the NH3+ group of a partner and the COO- group of the other, shows a quite constant binding energy (-8.1 ± 0.2 kcal/mol), whatever the pair type, and the relative orientation of the two interacting partners. This study suggests a first step to achieve a more realistic image of intermolecular interactions in aqueous environment, especially upon increasing concentration. It can also be considered as a preliminary attempt to assess the interactions of the Lys+ …Asp- /Glu- ion pairs stabilizing intra- and interchain interactions in proteins.


Subject(s)
Amines/chemistry , Aspartic Acid/chemistry , Density Functional Theory , Hydrogen-Ion Concentration , Ions/chemistry
5.
ACS Omega ; 4(19): 18049-18060, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31720508

ABSTRACT

Synthetic peptides mimicking the binding site of fertilin ß to its receptor, integrin α6ß1, were shown to inhibit sperm-egg fusion when added to in vitro media. In contrast, the synthetic cyclic hexapeptide, cyclo(Cys1-Ser2-Phe3-Glu4-Glu5-Cys6), named as cFEE, proved to stimulate gamete fusion. Owing to its biological specificity, this hexapeptide could help improve the in vitro fertilization pregnancy rate in human. In an attempt to establish the structure-activity relationship of cFEE, its structural dynamics was herein analyzed by means of ultraviolet circular dichroism (UV-CD) and Raman scattering. The low concentration CD profile in water, containing mainly a deep minimum at ∼202 nm, is consistent with a rather unordered chain. However, an ordering trend of the peptide loop has been observed in a less polar solvent such as methanol, where the UV-CD signal shape is formed by a double negative marker at ∼202/215 nm, indicating the presence of a type-II' ß-turn. Raman spectra recorded in aqueous samples upon a 100-fold concentration increase, still showed an important population (∼30%) of the disordered structure. The structural flexibility of the disulfide bridge was confirmed by the Raman markers arising from the Cys1-Cys6 disulfide bond-stretch motions. Density functional theory calculations highlighted the formation of the type-II' ß-turn on the four central residues of cFEE (i.e., -Ser2-Phe3-Glu4-Glu5-) either with a left- or with a right-handed disulfide. The structure with a left-handed S-S bond, however, appears to be more stable.

6.
Adv Protein Chem Struct Biol ; 112: 81-121, 2018.
Article in English | MEDLINE | ID: mdl-29680244

ABSTRACT

Primarily known as the inhibitor of growth hormone release, the role of somatostatin in many other inhibiting activities upon binding to its five G-protein-coupled receptors has been elucidated. Because of the short half-life of somatostatin, a number of synthetic analogues were elaborated for this peptide hormone. Herein, after recalling the main somatostatin therapeutic interests, we present the dynamical behavior of somatostatin-14 and its two currently used synthetic cyclic analogues, octreotide and pasireotide. Physical techniques, such as fluorescence, UV-visible absorption, circular dichroism, Raman spectroscopy, surface-enhanced Raman spectroscopy, and transmission electron microscopy, were jointly used in order to get information on the solution structural features, as well as on the anchoring sites of the three peptides on silver colloids. While somatostatin-14 adopts a rather unordered chain within the submillimolar concentration range, its cyclic analogues were revealed to be ordered, i.e., stabilized either in a type-II' ß-turn (octreotide) or in a face-to-face γ-turn/type-I ß-turn (pasireotide) structure. Nevertheless, a progressive structuring trend was observed in somatostatin-14 upon increasing concentration to the millimolar range. Because of their cationic character, the three peptides have revealed their capability to bind onto negatively charged silver nanoparticles. The high affinity of the peptides toward metallic particles seems to be extremely promising for the elaboration of somatostatin-based functionalized plasmonic nanoparticles that can be used in diagnosis, drug delivery, and therapy.


Subject(s)
Metal Nanoparticles/chemistry , Silver/chemistry , Somatostatin/analogs & derivatives , Somatostatin/chemistry , Adsorption , Humans , Thermodynamics
7.
Toxicon ; 149: 37-44, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29337218

ABSTRACT

The adenylate cyclase toxin (CyaA) plays an essential role in the early stages of respiratory tract colonization by Bordetella pertussis, the causative agent of whooping cough. Once secreted, CyaA invades eukaryotic cells, leading to cell death. The cell intoxication process involves a unique mechanism of translocation of the CyaA catalytic domain directly across the plasma membrane of the target cell. Herein, we review our recent results describing how calcium is involved in several steps of this intoxication process. In conditions mimicking the low calcium environment of the crowded bacterial cytosol, we show that the C-terminal, calcium-binding Repeat-in-ToXin (RTX) domain of CyaA, RD, is an extended, intrinsically disordered polypeptide chain with a significant level of local, secondary structure elements, appropriately sized for transport through the narrow channel of the secretion system. Upon secretion, the high calcium concentration in the extracellular milieu induces the refolding of RD, which likely acts as a scaffold to favor the refolding of the upstream domains of the full-length protein. Due to the presence of hydrophobic regions, CyaA is prone to aggregate into multimeric forms in vitro, in the absence of a chaotropic agent. We have recently defined the experimental conditions required for CyaA folding, comprising both calcium binding and molecular confinement. These parameters are critical for CyaA folding into a stable, monomeric and functional form. The monomeric, calcium-loaded (holo) toxin exhibits efficient liposome permeabilization and hemolytic activities in vitro, even in a fully calcium-free environment. By contrast, the toxin requires sub-millimolar calcium concentrations in solution to translocate its catalytic domain across the plasma membrane, indicating that free calcium in solution is actively involved in the CyaA toxin translocation process. Overall, this data demonstrates the remarkable adaptation of bacterial RTX toxins to the diversity of calcium concentrations it is exposed to in the successive environments encountered in the course of the intoxication process.


Subject(s)
Adenylate Cyclase Toxin/chemistry , Calcium/chemistry , Models, Biological , Whooping Cough/microbiology , Adenylate Cyclase Toxin/metabolism , Bordetella pertussis , Eukaryotic Cells/microbiology , Protein Domains , Protein Folding , Protein Translocation Systems , Protein Transport
8.
Phys Chem Chem Phys ; 19(42): 28684-28695, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29043324

ABSTRACT

Water interaction with peptide chains is one of the key structure stabilizing factors in an aqueous environment. Because of its strong polar character, water can bind to both anionic and cationic sites via electrostatic interactions. It can also act as a hydrogen-bond donor or acceptor according to its interactions with different polar groups in the backbone and side chains of peptides and proteins. Based on density functional theory calculations, the present report aims at illustrating the most energetically favorable interaction sites of aromatic side chains of phenylalanine, tyrosine, tryptophan, and histidine (neutral and protonated species) with surrounding water molecules. It was shown that beyond the strong interactions occurring between water and the aromatic ring acceptor/donor sites, such as O-H, N-H and -N[double bond, length as m-dash] groups, weaker interactions with π-electron clouds should also be considered. The latter type of binding, hereafter referred to as Hwπ interaction, involves one of the water hydrogen atoms (Hw) pointing toward the aromatic ring. Upon comparison between the theoretical data obtained from a purely implicit hydration model, i.e. a polarized solvent continuum, and those collected from a mixture of implicit and explicit hydration models, it has been shown that the explicit water molecule binding to aromatic rings affects the relative energies of the rotamers generated by the two side chain torsion angles (χ1 and χ2).

9.
J Pharm Biomed Anal ; 138: 54-62, 2017 May 10.
Article in English | MEDLINE | ID: mdl-28182991

ABSTRACT

Acetylcholine is the first discovered neurotransmitter that has received a great attention regarding its capability of binding to several cellular targets. The chemical composition of acetylcholine, including a positively charged trimethylammonium and a carbonyl group, as well as its conformational flexibility was pointed out as the key factors in the stabilization of its interactions. Here, the possibilities offered by a Raman scattering-based multiconformatioal analysis to access the most stable conformers of acetylcholine, is discussed. To control the validity of this protocol, acetylcholine and one of its closely structured analogues, acetylthiocholine, were simultaneously analyzed. Solution Raman spectra revealed distinct and well resolved strong markers for each molecule. Density functional theory calculations were consistent with the fact that the energy order of the low energy conformers is considerably affected by the acyloxy oxygen→sulfur atom substitution. Raman spectra were calculated on the basis of the thermal average of the spectra arising from the low energy conformers. It has been evidenced that the carbonyl and trimethylammonium groups are the most favorable hydration sites in aqueous environment. Taking into account the large gap between the carbonyl bond-stretch and aliphatic bending bands, Raman spectra also allowed separation of the HOH bending vibrations arising from the bound and bulk water molecules.


Subject(s)
Acetylcholine/chemistry , Acetylthiocholine/chemistry , Spectrum Analysis, Raman/methods , Molecular Conformation , Solutions/chemistry , Vibration , Water/chemistry
10.
Phys Chem Chem Phys ; 18(35): 24437-50, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27537101

ABSTRACT

Octreotide and pasireotide are two cyclic somatostatin analogues with an important clinical use in the treatment and diagnosis of neuroendocrine tumors. Herein, by the combined use of several techniques (UV-visible absorption, fluorescence, circular dichroism, ζ-potential, transmission electron microscopy, Raman scattering, surface-enhanced Raman scattering, and quantum mechanical calculations) we have followed the structural dynamics of these analogues in the bulk, as well as their binding sites on plasmonic (gold and silver) colloids. In contrast to the previously derived conclusions, the two peptides seem to possess completely different conformational features. Octreotide, a cyclic octapeptide, is formed by a moderately flexible type-II'ß-turn maintained by a deformable disulfide linkage. Pasireotide, in which the cyclic character is made possible by peptide bonds, manifests a rigid backbone formed by two oppositely placed tight turns of different types, i.e.γ-turn and type-I ß-turn. Owing to their cationic character, both analogues induce aggregation of negatively charged gold and silver colloids. Nevertheless, despite their notable structural differences, both peptides bind onto gold nanoparticles through their unique d-Trp residue. In contrast, their binding to silver colloids seems to be of electrostatic nature, as formed through monodentate or bidentate ionic pairs.

11.
Asian Cardiovasc Thorac Ann ; 24(6): 601-3, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27273232

ABSTRACT

Foreign body aspiration can occur in any age group, but it is more commonly seen in children. In adults, there is usually a predisposing condition that poses a risk of aspiration. If aspiration occurs, prompt diagnosis and extraction of the foreign body is needed to prevent early and late complications. We report a rare case of neglected foreign body aspiration in a 45-year-old schizophrenic opium addicted patient, which resulted in an occlusive lesion in the bronchus, mimicking bronchial carcinoma.


Subject(s)
Bone and Bones , Carcinoma, Bronchogenic/diagnosis , Foreign Bodies/diagnosis , Granuloma, Foreign-Body/diagnosis , Lung Neoplasms/diagnosis , Animals , Biopsy , Bronchoscopy , Chickens , Diagnosis, Differential , Eating , Foreign Bodies/etiology , Foreign Bodies/surgery , Granuloma, Foreign-Body/etiology , Granuloma, Foreign-Body/surgery , Humans , Male , Middle Aged , Opioid-Related Disorders/complications , Opium , Pneumonectomy , Poultry , Predictive Value of Tests , Schizophrenia/complications , Schizophrenia/diagnosis , Schizophrenic Psychology , Tomography, X-Ray Computed , Treatment Outcome
12.
Sci Rep ; 5: 14223, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26374675

ABSTRACT

Many Gram-negative bacteria use Type I secretion systems, T1SS, to secrete virulence factors that contain calcium-binding Repeat-in-ToXin (RTX) motifs. Here, we present structural models of an RTX protein, RD, in both its intrinsically disordered calcium-free Apo-state and its folded calcium-bound Holo-state. Apo-RD behaves as a disordered polymer chain comprising several statistical elements that exhibit local rigidity with residual secondary structure. Holo-RD is a folded multi-domain protein with an anisometric shape. RTX motifs thus appear remarkably adapted to the structural and mechanistic constraints of the secretion process. In the low calcium environment of the bacterial cytosol, Apo-RD is an elongated disordered coil appropriately sized for transport through the narrow secretion machinery. The progressive folding of Holo-RD in the extracellular calcium-rich environment as it emerges form the T1SS may then favor its unidirectional export through the secretory channel. This process is relevant for hundreds of bacterial species producing virulent RTX proteins.


Subject(s)
Calcium/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Models, Molecular , Protein Conformation , Protein Folding , Proteins/chemistry , Proteins/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary
13.
J Pharm Biomed Anal ; 114: 42-8, 2015 Oct 10.
Article in English | MEDLINE | ID: mdl-26004226

ABSTRACT

Since the late 1950s, metformin is the worldwide first-line pharmacologic treatment for type 2 diabetes. Beyond the fact that the mode of action of this drug has always been very difficult to elucidate, little is known about its physicochemical properties in aqueous solution. Herein, we focus on the protonation-deprotonation features of metformin by using jointly Raman scattering and theoretical calculations. Vibrational markers evidence the fact that within a wide pH interval extended at either side of the physiological one, i.e. ∼7 ± 4, metformin is mainly monoprotonated. Although the biprotonated form appears as major population at very low pH values (<1.5), Raman markers of neutral species do not dominate even at very high pH values (>13), presumably because of the extreme basicity of metformin as described by recent NMR measurements. Density functional theory calculations using both explicit and implicit hydration models, have led to presume a possible coexistence of two possible monoprotonated forms in aqueous environment. In conclusion, the biophysical features of this molecule and the amount used in clinical practice might certainly explain the pleiotropic actions toward several targets where metformin could be a permanent cationic partner, a proton donor/acceptor, as well as a good candidate for stabilizing the so-called π→π interactions.


Subject(s)
Chemistry, Pharmaceutical/methods , Hypoglycemic Agents/chemistry , Metformin/chemistry , Technology, Pharmaceutical/methods , Amino Acids/chemistry , Animals , Biophysics , Cattle , DNA/analysis , DNA/chemistry , Diabetes Mellitus, Type 2/drug therapy , Humans , Hydrogen-Ion Concentration , Platinum/chemistry , Protein Structure, Secondary , Protons , Serum Albumin/chemistry , Spectrum Analysis, Raman
14.
Biopolymers ; 101(10): 1019-28, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24729416

ABSTRACT

Lanreotide, a synthetic cyclic octapeptide, analogue of the peptide hormone somatostatin-14 (SST-14), is routinely used as a long-acting medication in the management of neuroendocrine tumors. Despite its therapeutic importance, low concentration structural data is still lacking for lanreotide. In fact, the major part of the previous structural investigations were focused on the remarkable aggregation properties of this peptide, appearing at high concentrations (>5 mM). Here, we have applied three optical spectroscopic techniques, i.e. fluorescence, circular dichroism and Raman scattering, for analyzing the structural dynamics at the concentrations below 5 mM, where lanreotide exists either in a monomer state or at the first stages of aggregation. The obtained data from lanreotide were discussed through their comparison with those collected from SST-14, leading us to the following conclusions: (i) The central D-Trp residue, forming with its adjacent Lys the main receptor interacting part of lanreotide, keeps a constant high rotational freedom whatever the environment (water, water/methanol, methanol). (ii) A solvent-dependent tight ß-turn, belonging to the type-II' family, is revealed in lanreotide. (iii) Raman data analyzed by band decomposition in the amide (I and III) regions allowed estimation of different secondary structural elements within the millimolar range. Interestingly, the applied protocol shows a perfect agreement between the structural features provided by the amide I and amide III Raman markers.


Subject(s)
Peptides, Cyclic/chemistry , Somatostatin/analogs & derivatives , Somatostatin/chemistry , Anisotropy , Circular Dichroism , Protein Structure, Secondary , Rotation , Solvents , Spectrometry, Fluorescence , Spectrum Analysis, Raman , Tryptophan/chemistry
15.
J Phys Chem B ; 116(31): 9337-45, 2012 Aug 09.
Article in English | MEDLINE | ID: mdl-22793173

ABSTRACT

Octreotide, a potent somatostatin (SST) analogue, is used as an antiproliferative drug in numerous endocrine tumors. Previous NMR investigations, basically performed in DMSO, had evidenced a type-II' ß-turn structure for this cyclic peptide. However, apart a few incomplete studies by circular dichroism, a systematic analysis of the structural behavior of octreotide in aqueous solution as a function of concentration and ionic strength was still lacking. Here, we report the chemical synthesis and purification of octreotide for optical spectroscopic purposes accompanied by its structural analysis. Furthermore, we have used octreotide as a short size, well-defined model compound for analyzing the CD and Raman markers of a type-II' ß-turn. CD data collected in the 25-250 µM range revealed the general trend of octreotide to undergo a disordered toward ordered structural transition upon increasing concentration. Especially, the ß-turn CD markers could be characterized above 50 µM by a negative band at ~202 nm flanked by a shoulder at ~218 nm. On the basis of Raman spectra recorded as a function of concentration (1-20 mM), we could assign the markers at ~1678 and ~1650 cm(-1) in the amide I region, and at ~1303, ~1288, and ~1251 cm(-1) in the amide III region, to the type-II' ß-turn structure. The stability of the intermolecular antiparallel ß-sheet formed in octreotide could be confirmed by the rigidity of the disulfide bridge which adopts a preferential gauche-gauche-gauche rotamer along the -Cß-S-S-Cß- moiety of the linked cysteines. The present analysis permits a better understanding of the differences between the structural features of SST-14 and its routinely used analogue, octreotide.


Subject(s)
Circular Dichroism , Octreotide/chemistry , Spectrum Analysis, Raman , Amino Acid Sequence , Chromatography, High Pressure Liquid , Circular Dichroism/methods , Models, Molecular , Octreotide/chemical synthesis , Protein Structure, Secondary , Spectrometry, Mass, Electrospray Ionization , Spectrum Analysis, Raman/methods
16.
Phys Chem Chem Phys ; 13(38): 17284-94, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-21879053

ABSTRACT

We present a set of new data allowing elucidation of the energetic, conformational and vibrational features of cysteine (Cys) and methionine (Met), i.e. two natural amino acids (AAs) containing a sulfur atom in their side chains. Special attention has been paid to cysteine, for which vibrational features were analysed in a wide pH range (6-to-12), where its backbone can switch from a zwitterionic to an anionic form, and its side chain SH group can be deprotonated. Through a detailed discussion on the relative acidity of the three protonation sites of this AA, as well as on the vibrational markers arising from zwitterionic and anionic backbones, we could assign the spectra recorded at pH 6, 9.2 and 12 to three species, referred to as Cys(0), Cys(1-)(a) and Cys(2-), where the superscripts designate their global net charges. To bring clarification to the structural and vibrational features, quantum mechanical calculations based on the Density Functional Theory (DFT) were carried out, allowing (i) a quasi exhaustive energetic and side chain conformational analysis through 804 clusters of explicitly hydrated AAs; (ii) simulation of the observed aqueous solution vibrational spectra of Cys(0), Cys(-2) and Met by means of the theoretical data obtained from their conformationally distinct lowest energy clusters.


Subject(s)
Cysteine/chemistry , Methionine/chemistry , Protons , Models, Molecular , Molecular Conformation , Spectrophotometry, Infrared , Spectrum Analysis, Raman
17.
J Chem Phys ; 135(5): 055101, 2011 Aug 07.
Article in English | MEDLINE | ID: mdl-21823732

ABSTRACT

A comprehensive description of the energetic, conformational, and vibrational features of the two amino acids (AAs) with polar side chains, i.e., serine and threonine, in aqueous environment, is provided. To adequately analyze the side chain conformational flexibility of these amino acids, we resorted to quantum mechanical calculations with the use of density functional theory, which allowed the determination of the energetic features of these AAs through 236 clusters. Each cluster contains a zwitterionic AA surrounded by seven explicit water molecules. The obtained data could evidence the effect of the side chain conformational angle (χ(1) and χ(2)) as well as the location of water molecules on the energy landscapes of both AAs. Four of the lowest energy clusters of each AA, which give rise to distinct side chain conformations, were selected in order to reproduce the FT-IR and Raman spectra recorded in aqueous solutions and to assign the vibrational modes responsible of the main observed bands.


Subject(s)
Serine/chemistry , Threonine/chemistry , Models, Molecular , Molecular Conformation , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Thermodynamics , Water/chemistry
18.
J Phys Chem B ; 114(46): 15319-30, 2010 Nov 25.
Article in English | MEDLINE | ID: mdl-21043521

ABSTRACT

Four out of the 20 natural α-amino acids (α-AAs) contain aromatic rings in their side chains. In a recent paper (J. Phys. Chem. B 2010, 114, 9072-9083), we have analyzed the structural and vibrational features of l-histidine, one of the potent elements of this series. Here, we report on the three remaining members of this family, i.e., l-phenylalanine, l-tyrosine, and l-tryptophan. Their solution (H(2)O and D(2)O) Raman scattering and Fourier transform infrared absorption attenuated total reflection (FT-IR ATR) spectra were measured at room temperature from the species corresponding to those existing at physiological conditions. Because of the very low water solubility of tyrosine, special attention was paid to avoid any artifact concerning the report of the vibrational spectra corresponding to nondissolved powder of this AA in aqueous solution. Finally, we could obtain for the first time the Raman and FT-IR spectra of tyrosine at very low concentration (2.3 mM) upon long accumulation time. To clarify this point, those vibrational spectra of tyrosine recorded either in the solid phase or in a heterogeneous state, where dissolved and nondissolved species of this AA coexist in aqueous solution, are also provided as Supporting Information . To carry out a discussion on the general geometrical and vibrational behavior of these AAs, we resorted to quantum mechanical calculations at the DFT/B3LYP/6-31++G* level, allowing (i) determination of potential energy surfaces of these AAs in a continuum solvent as a function of the torsion angles χ(1) and χ(2), defining the conformation of each aromatic side chain around C(α)-C(ß) and C(ß)-C(γ) bonds, respectively; (ii) analysis of geometrical features of the AAs surrounded by clusters of n explicit (n = 5-7) water molecules interacting with the backbone and aromatic rings; and (iii) assignment of the observed vibrational modes by means of the theoretical data provided by the lowest energy conformers of explicitly hydrated amino acids.


Subject(s)
Peptides/chemistry , Phenylalanine/chemistry , Tryptophan/chemistry , Tyrosine/chemistry , Water/chemistry , Models, Theoretical , Solutions , Solvents/chemistry , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Vibration
19.
J Phys Chem B ; 114(27): 9072-83, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20568807

ABSTRACT

In manuscript VI of the same series (J. Phys. Chem. B 2010, 114, 1077-1088), we reported the geometrical and vibrational features of lysine and arginine, that is, two alpha-amino acids (alpha-AAs) with positively charged side chains, at physiological conditions. Here, we report our results on histidine, one of the most biologically important alpha-AAs, whose side chain can be neutral or positively charged through a protonation-deprotonation process of the nitrogens involved in its cyclic side chain at pH values in the physiological range. We have recorded at room temperature Raman scattering and Fourier-transform infrared (FT-IR) absorption spectra from the aqueous solutions of the AA at pH values 4, 6.8, and 8. It has been shown that a Raman spectrum recorded at the intermediate pH (6.8) can be perfectly reconstituted by a linear combination of those observed at two extreme pH values (4 and 8), allowing determination of the populations of histidine with protonated and neutral side chains in solution. The above-mentioned experimental data were completed by the vibrational spectra recorded in D(2)O. On the other hand, quantum mechanical calculations at the DFT/B3LYP/6-31++G* allowed us to analyze the energetic, geometrical, and vibrational features of histidine. Through a discussion on the basis of experimental and theoretical results, we comment on (i) the potential energy surfaces of histidine placed in a polarizable dielectric continuum, providing molecular energy landscapes as a function of its side chain orientations around C(alpha)-C(beta) and C(beta)-C(gamma) bonds; (ii) the full geometry optimization of the low energy conformers placed in a solvent continuum or in the presence of n explicit water molecules (n = 3, 7); (iii) the energy value separating the two histidine forms with neutral side chains; (iv) the determination of the side chain pK(a) by means of Raman spectra; and (v) the assignment of the observed vibrational modes by means of the lowest-energy conformers of hydrated histidine.


Subject(s)
Histidine/chemistry , Peptides/chemistry , Protons , Vibration , Hydrogen-Ion Concentration , Models, Molecular , Molecular Conformation , Quantum Theory , Solvents/chemistry , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Thermodynamics , Water/chemistry
20.
J Phys Chem B ; 114(2): 1077-88, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-20025231

ABSTRACT

In two recent reports of the same series (J. Phys. Chem. B 2007, 111, 1470-1477 and J. Phys. Chem. B 2009, 113, 3169-3178), we have described the geometrical and vibrational analysis of glycine and amino acids (AAs) with hydrophobic side chains through the joint use of optical spectroscopy and quantum mechanical calculations. Here, we report Raman scattering and Fourier-Transform Infrared (FT-IR) Attenuated Total Reflectance (ATR) spectra measured from the aqueous solutions (H(2)O and D(2)O) of L-lysine and L-arginine, i.e. two alpha-AAs with positively charged hydrophilic side chains. The discussion on the vibrational features of both AAs could be carried out thanks to the theoretical calculations performed by means of the Density Functional Theory (DFT) approach at the B3LYP/6-31++G* level. We have analyzed the influence of implicit (with a polarizable dielectric continuum) and explicit (by means of an H(2)O cluster interacting with H-donor and H-acceptor sites of AAs) hydration models. In addition, through the calculated geometrical parameters and vibrational wavenumbers, a discussion was performed on the effect of the Cl(-) anion interacting with the positively charged side chains of explicitly hydrated AAs.


Subject(s)
Arginine/chemistry , Lysine/chemistry , Peptides/chemistry , Models, Molecular , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...