Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 70(1): 27-41, 2023 01.
Article in English | MEDLINE | ID: mdl-35704537

ABSTRACT

This paper reviews the state-of-the-art methods of dielectrophoresis for micro- and nanomaterial manipulation. Dielectrophoresis is a well-known technique for material manipulation using a nonuniform electric field. This field can apply a force to dielectric materials and move them toward a predefined location. Controlling the pattern of the electric field and its intensity, achieved by a specific arrangement of electrodes or insulators, along with the dielectric properties of the materials allows a variety of manipulation functions including trapping, separation, and transportation. The development of microfabrication techniques has significantly improved the research quality in the field of dielectrophoresis for precisely manipulating micro and nanomaterials. Later, the advent of microfluidic devices provided an excellent platform for reliable and practical devices. Modifying the shape, geometry, and material of the electrodes, isolating the electrodes from the sample, incorporating a particular arrangement of insulators within the electric field, and monitoring the operation in situ are some of the methods utilized for overcoming common problems in dielectrophoretic devices or the problems associated with a specific sample and the manipulation function. The goal of the research in this field is to design practical, high throughput, and inexpensive devices that reliably manipulate micro and nanomaterials. Accordingly, this review aims to represent latest findings and advancements in the field of dielectrophoresis. In particular, the working principles, technical implementation details, current status, and the issues and challenges of dielectrophoretic devices for electrode-based and insulator-based dielectrophoresis in terms of operation and fabrication are discussed.


Subject(s)
Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Electrophoresis , Electrodes , Microtechnology
2.
Nanoscale ; 14(16): 6248-6257, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35411364

ABSTRACT

Quantum interference effects in single-molecule devices can significantly enhance the thermoelectric properties of these devices. However, single-molecule systems have limited utility for power conversion. In this work, we study the effects of destructive quantum interference in molecular junctions on the thermoelectric properties of hybrid, 2-dimensional molecule-nanoparticle monolayers. We study two isomers of benzenedithiol molecules, with either a para or meta configuration for the thiol groups, as molecular interlinkers between gold nanoparticles in the structure. The asymmetrical structure in the meta configuration significantly improves the Seebeck coefficient and power factor over the para configuration. These results suggest that thermoelectric performance of engineered, nanostructured material can be enhanced by harnessing quantum interference effects in the substituent components.

3.
Sci Rep ; 11(1): 24301, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34934143

ABSTRACT

An important challenge in the fabrication of tissue engineered constructs for regenerative medical applications is the development of processes capable of delivering cells and biomaterials to specific locations in a consistent manner. Electrospraying live cells has been introduced in recent years as a cell seeding method, but its effect on phenotype nor genotype has not been explored. A promising candidate for the cellular component of these constructs are human adipose-derived stem cells (hASCs), which are multipotent stem cells that can be differentiated into fat, bone, and cartilage cells. They can be easily and safely obtained from adipose tissue, regardless of the age and sex of the donor. Moreover, these cells can be maintained and expanded in culture for long periods of time without losing their differentiation capacity. In this study, hASCs directly incorporated into a polymer solution were electrosprayed, inducing differentiation into chondrocytes, without the addition of any exogenous factors. Multiple studies have demonstrated the effects of exposing hASCs to biomolecules-such as soluble growth factors, chemokines, and morphogens-to induce chondrogenesis. Transforming growth factors (e.g., TGF-ß) and bone morphogenetic proteins are particularly known to play essential roles in the induction of chondrogenesis. Although growth factors have great therapeutic potential for cell-based cartilage regeneration, these growth factor-based therapies have presented several clinical complications, including high dose requirements, low half-life, protein instability, higher costs, and adverse effects in vivo. The present data suggests that electrospraying has great potential as hASCs-based therapy for cartilage regeneration.


Subject(s)
Cell Differentiation , Chondrocytes/metabolism , Chondrogenesis , Stem Cells/metabolism , Tissue Engineering , Cell Line , Humans
4.
J Vis Exp ; (173)2021 07 10.
Article in English | MEDLINE | ID: mdl-34309592

ABSTRACT

Gold nanoparticles (Au nanoparticles) that are ~12 nm in diameter were synthesized by rapidly injecting a solution of 150 mg (0.15 mmol) of tetrachloroauric acid in 3.0 g (3.7 mmol, 3.6 mL) of oleylamine (technical grade) and 3.0 mL of toluene into a boiling solution of 5.1 g (6.4 mmol, 8.7 mL) of oleylamine in 147 mL of toluene. While boiling and mixing the reaction solution for 2 hours, the color of the reaction mixture changed from clear, to light yellow, to light pink, and then slowly to dark red. The heat was then turned off, and the solution was allowed to gradually cool down to room temperature for 1 hour. The gold nanoparticles were then collected and separated from the solution using a centrifuge and washed three times; by vortexing and dispersing the gold nanoparticles in 10 mL portions of toluene, and then precipitating the gold nanoparticles by adding 40 mL portions of methanol and spinning them in a centrifuge. The solution was then decanted to remove any remaining byproducts and unreacted starting materials. Drying the gold nanoparticles in a vacuum environment produced a solid black pellet; which could be stored for long periods of time (up to one year) for later use, and then redissolved in organic solvents such as toluene.


Subject(s)
Gold , Metal Nanoparticles , Phase Transition , Solvents , Toluene
5.
IEEE Trans Biomed Eng ; 66(6): 1505-1513, 2019 06.
Article in English | MEDLINE | ID: mdl-30307850

ABSTRACT

Advances in several engineering fields have led to a trend toward miniaturization and portability of wearable biosensing devices, which used to be confined to large tools and clinical settings. Various systems to continuously measure electrophysiological activity through electrical and optical methods are one category of such devices. Being wearable and intended for prolonged use, the amount of noise introduced on sensors by movement remains a challenge and requires further optimization. User movement causes motion artifacts that alter the overall quality of the signals obtained, hence corrupting the resulting measurements. This paper introduces a fully wearable optical biosensing system to continuously measure pulse oximetry and heart rate, utilizing a reflectance-based probe. Furthermore, a novel data-dependent motion artifact tailoring algorithm is implemented to eliminate noisy data due to the motion artifact and measure oxygenation level with high accuracy in real time. By taking advantages of current wireless transmission and signal processing technologies, the developed wearable photoplethysmography device successfully captures the measured signals and sends them wirelessly to a mobile device for signal processing in real time. After applying motion artifact tailoring, evaluating accuracy with a continuous clinical device, the blood oxygenation measurements obtained from our system yielded an accuracy of at least 98%, when compared to a range of 93.6%-96.7% observed before from the same initial data. Additionally, heart rate accuracy above 97% was achieved. Motion artifact tailoring and removal in real time, continuous systems will allow wearable devices to be truly wearable and a reliable electrophysiological monitoring and diagnostics tool for everyday use.


Subject(s)
Oximetry , Signal Processing, Computer-Assisted/instrumentation , Wearable Electronic Devices , Wireless Technology/instrumentation , Adolescent , Adult , Algorithms , Artifacts , Female , Heart Rate/physiology , Humans , Male , Movement/physiology , Oximetry/instrumentation , Oximetry/methods , Oxygen/blood , Photoplethysmography/instrumentation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...