Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
PLoS One ; 19(4): e0301355, 2024.
Article in English | MEDLINE | ID: mdl-38683825

ABSTRACT

Diabetes mellitus (DM) is a severe metabolic disease that can have significant consequences for cognitive health. Bioflavonoids such as Trifolium alexandrinum (TA), quercetin (Q), and Biochanin-A (BCA) are known to exert a wide range of pharmacological functions including antihyperglycemic activity. This study aimed to investigate the neurotherapeutic effects of quercetin-loaded nanoparticles (Q-LNP) and BCA extracted from TA against diabetes-induced cerebral cortical damage through modulation of PI3K/Akt/GSK-3ß and AMPK signaling pathways. Adult male Wistar albino rats (N = 25) were randomly assigned to one of five groups: control, diabetics fed a high-fat diet (HFD) for 2 weeks and intraperitoneally (i.p.) injected with STZ (40 mg/kg), and diabetics treated with Q-LNP (50 mg/kg BW/day), BCA (10 mg/kg BW/day), or TA extract (200 mg/kg BW/day). Treatments were applied by oral gavage once daily for 35 days. Diabetic rats treated with Q-LNP, BCA, and TA extract showed improvement in cognitive performance, cortical oxidative metabolism, antioxidant parameters, and levels of glucose, insulin, triglyceride, and total cholesterol. In addition, these treatments improved neurochemical levels, including acetylcholine, dopamine, and serotonin levels as well acetylcholinesterase and monoamine oxidase activities. Furthermore, these treatments lowered proinflammatory cytokine production for TNF-α and NF-κB; downregulated the levels of IL-1ß, iNOS, APP, and PPAR-γ; and attenuated the expressions of PSEN2, BACE, IR, PI3K, FOXO 1, AKT, AMPK, GSK-3ß, and GFAP. The histopathological examinations of the cerebral cortical tissues confirmed the biochemical results. Overall, the present findings suggest the potential therapeutic effects of TA bioflavonoids in modulating diabetes-induced cerebral cortical damage.


Subject(s)
Cerebral Cortex , Diabetes Mellitus, Experimental , Glycogen Synthase Kinase 3 beta , Nanoparticles , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Quercetin , Trifolium , Animals , Male , Rats , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Glycogen Synthase Kinase 3 beta/metabolism , Nanoparticles/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Quercetin/pharmacology , Quercetin/therapeutic use , Quercetin/administration & dosage , Rats, Wistar , Signal Transduction/drug effects , Trifolium/chemistry
2.
PLoS One ; 19(4): e0301454, 2024.
Article in English | MEDLINE | ID: mdl-38603728

ABSTRACT

Testicular dysfunction is a prevalent health problem frequently reported in individuals with diabetes mellitus (DM). Oxidative-inflammatory reactions, hormonal and spermatic abnormalities often accompany this illness. Herbal remedies "particularly wild plants" including chicory (Chicorium Intybus) and purslane (Portulaca Oleracea) are emerging as popular agents for people dealing with these issues due to their ability to act as antioxidants, reduce inflammation, and exhibit antidiabetic effects. According to the collected data, the daily administration of chicory (Ch) seed-extract (250 mg/kg) or purslane (Pu) seed-extract (200 mg/kg) to streptozotocin (STZ)-induced diabetic rats (50 mg/kg) for 30 days resulted in the normalization of fasting blood glucose (FBG), serum fructosamine, insulin levels, and insulin resistance (HOMA-IR), as well as reducing lipid peroxidation end-product malondialdehyde (MDA) level, aldehyde oxidase (AO) and xanthene oxidase (XO) activities. While caused a considerable improvement in glutathione (GSH) content, superoxide dismutase (SOD), catalase (CAT) activity, and total antioxidant capacity (TAC) when compared to diabetic rats. Ch and Pu extracts had a substantial impact on testicular parameters including sperm characterization, testosterone level, vimentin expression along with improvements in body and testis weight. They also mitigated hyperlipidemia by reducing total lipids (TL), total cholesterol (TC) levels, and low-density lipoprotein cholesterol (LDL-C), while increasing high-density lipoprotein cholesterol (HDL-C). Furthermore, oral administration of either Ch or Pu notably attuned the elevated proinflammatory cytokines as tumor necrotic factor (TNF-α), C-reactive protein (CRP), and Interleukin-6 (IL-6) together with reducing apoptosis and DNA damage. This was achieved through the suppression of DNA-fragmentation marker 8OHdG, triggering of caspase-3 immuno-expression, and elevation of Bcl-2 protein. The histological studies provided evidence supporting the preventive effects of Ch and Pu against DM-induced testicular dysfunction. In conclusion, Ch and Pu seed-extracts mitigate testicular impairment during DM due to their antihyperglycemic, antilipidemic, antioxidant, anti-inflammatory, and antiapoptotic properties.


Subject(s)
Cichorium intybus , Diabetes Mellitus, Experimental , Insulin Resistance , Portulaca , Testicular Diseases , Humans , Rats , Male , Animals , Portulaca/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Diabetes Mellitus, Experimental/metabolism , Plants, Edible/metabolism , Blood Glucose/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Oxidative Stress , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Inflammation , Testicular Diseases/drug therapy , Glutathione/metabolism , Cholesterol/pharmacology
3.
Nutrients ; 16(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38542792

ABSTRACT

Corona Virus Disease 19 (COVID-19) has been a major pandemic impacting a huge population worldwide, and it continues to present serious health threats, necessitating the development of novel protective nutraceuticals. Biobran/MGN-3, an arabinoxylan rice bran, is a potent immunomodulator for both humans and animals that has recently been demonstrated to protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. We here investigate Biobran/MGN-3's potential to enhance an antiviral immune response in humans. Peripheral blood mononuclear cells (PBMCs) derived from eight subjects taking Biobran/MGN-3 (age 55-65 years) and eight age-matched control subjects were stimulated with irradiated SARS-CoV-2 virus and then subjected to immuno-phenotyping and multiplex cytokine/chemokine assays. Results showed that PBMCs from subjects supplemented with Biobran/MGN-3 had significantly increased activation of plasmacytoid dendritic cells (pDCs) coupled with increased IFN-α secretion. We also observed higher baseline expression of HLA-DR (human leukocyte antigen-DR isotype) on dendritic cells (DCs) and increased secretion of chemokines and cytokines, as well as a substantial increase in cytotoxic T cell generation for subjects taking Biobran/MGN-3. Our results suggest that Biobran/MGN-3 primes immunity and therefore may be used for boosting immune responses against SARS-CoV-2 infections and other diseases, particularly in high-risk populations such as the elderly.


Subject(s)
COVID-19 , Oryza , Xylans , Animals , Humans , Aged , Middle Aged , Oryza/metabolism , Leukocytes, Mononuclear/metabolism , Cytokines/metabolism
4.
RSC Adv ; 14(7): 4930-4945, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38327812

ABSTRACT

This research examined the effectiveness of Biobran as a bioactive substance that could potentially improve wound healing. It also looked at how Biobran affects the properties of a nanofibrous scaffold made through coaxial electrospinning. This is the first study exploring the use of Biobran in this context and its interaction with nanofibrous scaffolds. The scaffolds were composed of poly(ε-caprolactone) (PCL) in the shell and various concentrations of Biobran blended with polyvinyl alcohol (PVA) in the core. The properties of the scaffolds were characterized by SEM, TEM, FTIR, XRD, TGA, DSC, stress-strain test, WCA, release test, MTT cytotoxicity assay, wound scratching assay, and the dye exclusion method using trypan blue. The scaffolds loaded with Biobran exhibited a more compact and smooth morphology compared with the scaffold without Biobran. The physical interaction and crystallinity of the polymers in the scaffolds were also affected by Biobran in a concentration-dependent manner. This positively influenced their tensile strength, elongation at break, thermal stability, and hydrophilicity. The porosity, water uptake capacity, and WVTR of the nanofibrous scaffolds are within the optimal ranges for wound healing. The release rate of Biobran, which revealed a biphasic release pattern, decreased with increasing Biobran concentration, resulting in controlled and sustained delivery of Biobran from the nanofiber scaffolds. The cell viability assays showed a dose-dependent effect of Biobran on WISH cells, which might be attributed to the positive effect of Biobran on the physicochemical properties of the nanofibrous scaffolds. These findings suggest that Biobran-loaded core/shell nanofiber scaffolds have a potential application in wound healing as an ideal multifunctional wound dressing.

5.
J Radiat Res ; 65(2): 145-158, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38247158

ABSTRACT

Ionizing radiation (IR) severely harms many organs, especially the hematopoietic tissue, mandating the development of protective nutraceuticals. MRN-100, a hydro-ferrate fluid, has been shown to protect γ-radiated fish against hematopoietic tissue damage and lethality. The current study aimed to examine MRN-100's protective effect against irradiated mice and explore the mechanisms underlying its effect. Mice received a single acute, sub-lethal, 5 Gy, whole body dose of X-ray IR. MRN-100 treatment was administered daily for 2-weeks pre-irradiation until 1-week post-irradiation. Spleen and blood were analysed for oxidative stress, hematological, histological and biochemical parameters. Radiation exposure markedly decreased complete blood count (CBC) parameters including hemoglobin, hematocrit, red blood cells, platelets, white blood cells and lymphocytes, and significantly increased neutrophils. In contrast, MRN-100 supplementation to irradiated mice ameliorated all CBC parameters and protected against DNA damage in both splenic cells and serum. It also had an antioxidant effect, increasing the levels of glutathione, superoxide dismutase, catalase and total antioxidant capacity, which were otherwise decreased by irradiation. MRN-100 intake reduced the oxidative stress biomarker levels of nitric oxide, protein carbonyl, malondialdehyde, reactive oxygen species and 8-hydroxydeoxyguanosine, a marker specific to DNA damage. Furthermore, MRN-100 enhanced serum iron and reversed the radiation-induced elevations of liver enzymes. Finally, MRN-100 protected splenic tissue from irradiation as observed by histology. We conclude that MRN-100 consumption may protect against oxidative stress generated by radiation exposure, suggesting that it may be employed as an adjuvant treatment to prevent radiation's severe damage to important organs.


Subject(s)
Radiation Injuries , Radiation-Protective Agents , Mice , Animals , Radiation Injuries/prevention & control , Antioxidants/pharmacology , Oxidative Stress/radiation effects , Iron/pharmacology , Radiation-Protective Agents/pharmacology , Whole-Body Irradiation , Gamma Rays
6.
Article in English | MEDLINE | ID: mdl-37501860

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a common metabolic disease accompanied by cognitive impairment, hippocampal malfunctioning, and inflammation. Biobran/MGN-3, an arabinoxylan rice bran, has been shown to have an antidiabetic effect in streptozotocin-induced diabetic rats. The present study investigates Biobran's effect against diabetes-induced cognitive impairment and synaptotoxicity in the hippocampus via oxidative stress and the IR/A/NF-κB signaling pathway in rats. Diabetes was induced via i.p. injection of streptozotocin (STZ) (40 mg/kg BW); STZ-treated rats were then administered Biobran (100 mg/kg BW) for 4 wks. Biobran supplementation improved motor coordination and muscular strength, as assessed by Kondziella's inverted screen test. Biobran also improved concentration levels of glutathione (GSH), antioxidant enzymes, acetylcholine (ACh), dopamine, serotonin, insulin receptor (IR), and alpha serine-threonine protein kinase (Akt); it protected against elevated levels of glucose, total cholesterol, triglycerides, oxidative stress markers, TBARS, NO, AChE, and MAO; and it significantly decreased inflammatory cytokines levels of IL-1ß, NF-κB, TNF-α, and amyloid ß1-42. Moreover, Biobran ameliorated hippocampal histological alterations. Immunohistochemical observations showed that Biobran reduced overexpression of hippocampal synaptophysin and Ki67 relative to untreated diabetic rats. Biobran may ameliorate hippocampal alterations in diabetic rats via its antidiabetic, antiproliferative, anti-inflammatory, antiapoptotic, and antioxidant effects.

7.
J Parasitol Res ; 2023: 7829290, 2023.
Article in English | MEDLINE | ID: mdl-36937557

ABSTRACT

Sarcocystis cruzi was identified by molecular methods from an intermediate host, cattle (Bos taurus), in El-Kharga, New Valley Governorate, Egypt, and its life cycle and pathogenicity were studied in the final host, dogs (Canis familiaris). 600 slaughtered cattle aged 6-8 years (480/120 males/females) were included. In addition, three laboratory-bred, coccidian-free puppies aged 2-3 months were fed infected bovine muscles to locate the definitive host and analyze sporogony. 18S rRNA-specific gene primers were used for DNA amplification from esophageal muscles. These polymerase chain reaction (PCR) amplicons were subjected to restriction fragment length polymorphism (RFLP) and molecular sequence analysis. Infection was detected in 78.8% (473/600; 95% CI, 75.56-82.11%). Histopathological examination of esophageal muscles showed oval- to spherical-shaped cysts, 96.7 µm wide by 326.9 µm long; cysts in cardiac muscles were ovoid and smaller. Infected puppies began shedding sporocysts in feces 7 days post-inoculation and showed distorted organ architecture, severe cellular damage, and inflammatory lesions in liver, kidney, esophagus, and stomach. Three oocysts with different shapes and sizes were identified. Partial 18S rRNA gene sequences of isolated New Valley sarcocysts were identical to S. cruzi isolated from different areas, verifying their genetic relatedness. Our analysis suggests that S. cruzi is the most prevalent in slaughtered cattle in New Valley Governorate, Egypt.

8.
Nutrients ; 15(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36678324

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19), poses a serious global public health threat for which there is currently no satisfactory treatment. This study examines the efficacy of Biobran/MGN-3 against SARS-CoV-2. Biobran is an arabinoxylan rice bran that has been shown to significantly inhibit the related influenza virus in geriatric subjects. Here, Biobran's anti-SARS-CoV-2 activity was assessed using MTT and plaque reduction assays, RT-PCR, ELISA techniques, and measurements of SARS-CoV-2-related gene expression and protein levels. For Vero E6 cells infected with SARS-CoV-2, Biobran reduced the viral load by 91.9% at a dose of 100 µg/mL, it reduced viral counts (PFU/mL) by 90.6% at 50 µg/mL, and it exhibited a significant selectivity index (EC50/IC50) of 22.5. In addition, Biobran at 10 µg/mL inhibited papain-like proteinase (PLpro) by 87% and ACE2 SARS-CoV-2 S-protein RBD by 90.5%, and it significantly suppressed SARS-CoV-2 gene expression, down-regulating E-gene and RdRp gene expression by 93% each at a dose of 50 µg/mL and inhibiting the E-protein by 91.3%. An in silico docking study was also performed to examine the protein-protein interaction (PPI) between SARS-CoV-2 RBD and DC-SIGN as well as between serine carboxypeptidase and papain-like protease PLpro. Serine carboxypeptidase, an active ingredient in Biobran, was found to interfere with the binding of SARS-CoV-2 to its receptor DC-SIGN on Vero cells, thus preventing the cell entry of SARS-CoV-2. In addition, it impairs the viral replication cycle by binding to PLpro. We conclude that Biobran possesses potent antiviral activity against SARS-CoV-2 in vitro and suggest that Biobran may be able to prevent SARS-CoV-2 infection. This warrants further investigation in clinical trials.


Subject(s)
COVID-19 , Oryza , Animals , Chlorocebus aethiops , Humans , Aged , SARS-CoV-2 , COVID-19/prevention & control , Vero Cells , Papain , Antiviral Agents/pharmacology , Peptide Hydrolases
9.
Biomed Pharmacother ; 157: 113975, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36371853

ABSTRACT

In vitro studies have shown that Marina Crystal Minerals (MCM), a crystallized mixture of minerals and trace elements from sea water, possesses apoptotic and immune modulatory effects in human breast cancer cells MDA-MB-231. The current study aimed to evaluate MCM's anticancer effect in vivo against murine mammary adenocarcinoma cells and to explore its underlying mechanisms. Mice were inoculated intramuscularly with Ehrlich ascites carcinoma (EAC) cells, a breast adenocarcinoma. Tumors became palpable within 9 days. Tumor-bearing mice were injected with MCM intraperitoneally (IP) or intratumorally (IT) at a dose of 40 mg/kg BW for 6 days/week until day 28 post-inoculation. Tumor growth, cell cycle progression, cell cycle regulatory proteins, apoptosis, apoptotic regulatory markers, mitochondrial membrane potential (MMP), natural killer (NK) cell activity, and histopathological effects were investigated. Treatment with MCM reduced tumor volume by 49.4% for IP and 59.5% for IT injection. MCM induced cancer cell apoptosis, as indicated by a sub-G1 peak and confirmed by Annexin V/PI assay and histopathological examination. This was mediated by increased Bax expression, caspase-3 activation, decreased Bcl-2 expression, and MMP disruption. Furthermore, MCM treatment induced G1 cell cycle arrest, mediated through significantly increased expression of p53, p21, and p27 and decreased expression of cyclin D1 and PCNA in cancer cells. Finally, MCM treatment markedly enhanced NK cell cytotoxicity. MCM possesses chemopreventive potential to reduce tumor growth by suppressing cell proliferation, inducing apoptosis in EAC cells via a mitochondrial dependent pathway, and activating the immune system. Our results suggest MCM's beneficial potential for treating breast adenocarcinoma.


Subject(s)
Apoptosis , Breast Neoplasms , Mice , Humans , Animals , Female , Cell Line, Tumor , Membrane Potential, Mitochondrial , Cell Proliferation , Breast Neoplasms/pathology
10.
Biomed Pharmacother ; 149: 112838, 2022 May.
Article in English | MEDLINE | ID: mdl-35344738

ABSTRACT

Diabetes is a metabolic disease that is mainly characterized by hyperglycemia. The present work investigated the efficacy of the flavanones hesperetin (HES) and quercetin (Q) extracted from Trifolium alexandrinum (TA) to treat type 2 diabetic rats. Wistar albino rats were supplemented with a high fat diet (HFD) for 2 weeks and then administered streptozotocin to induce diabetes. Diabetic rats were orally treated with Q, HES, and TA extract at concentrations of 40, 50, and 200 mg/kg BW, respectively, for 4 weeks. Various biochemical, molecular, and histological analysis were performed to evaluate the antidiabetic effects of these treatments. Q, HES, and TA extract treatments all significantly improved diabetic rats' levels of serum glucose, insulin, glucagon, liver function enzymes, hepatic glycogen, α-amylase, lipase enzymes, lipid profiles, oxidative stress indicators, and antioxidant enzymes as compared with control diabetic untreated rats. In addition, supplementation with Q, HES, and TA extract attenuated the activities of glucose-6-phosphate; fructose-1,6-bisphospahate; 6-phosphogluconate dehydrogenase; glucose-6-phosphate dehydrogenase; glucokinase; and hexokinase in pancreatic tissue, and they improved the levels of glucose transporter 2 and glucose transporter 4. Furthermore, these treatments modulated the expressions levels of insulin receptor (IR), phosphoinositide 3-kinase (PI3K), AMP-activated protein kinase (AMPK), caspase-3, and interleukin-1ß (IL-1ß). Enhancement of the histological alterations in pancreatic tissues provided further evidence of the ability of Q, HES, and TA extract to exert antidiabetic effects. Q, HES, and TA extract remedied insulin resistance by altering the IR/PI3K and AMPK signaling pathways, and they attenuated type 2 diabetes by improving the antioxidant defense system.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Trifolium , AMP-Activated Protein Kinases/metabolism , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Carbohydrate Metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Hesperidin , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Insulin , Liver , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Quercetin/pharmacology , Rats , Rats, Wistar , Receptor, Insulin/metabolism , Streptozocin/pharmacology , Trifolium/chemistry , Trifolium/metabolism
11.
Heliyon ; 8(3): e09047, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35299600

ABSTRACT

Thymax is a gross thymic extract that has been shown to induce apoptosis in vitro for human breast cancer cells. Here we examine Thymax's ability to induce apoptosis in animals bearing Ehrlich ascites carcinoma (EAC). Thymax was administered six days/week orally to mice (5.45 mg/kg body weight) beginning either 14 days prior to EAC inoculation or 9 days post inoculation; treatment continued for 30 days post inoculation. Pretreatment of mice with Thymax markedly delayed tumor growth and reduced tumor incidence by 38.9%, and tumor volumes relative to untreated controls were suppressed by 90.5% and 55.0% for pre- and post-inoculation groups, respectively. Treatment with Thymax inhibited cellular proliferation by decreasing the expression of tumor markers Ki-67, PCNA, and Cyclin D1 in cancer cells and increasing the expression of p21 and p27. This was associated with the ability of Thymax to arrest the cell cycle of EAC cells in the G0/G1 phase and to induce apoptosis, as indicated by a significant increase in the sub-G1 phase's percentage of hypodiploid cells and further affirmed by DNA fragmentation and Annexin V/propidium iodide staining. In addition, Thymax exerted its apoptotic effect in EAC cancer cells through a mitochondrial-dependent pathway, as evidenced by an increased Bax/Bcl-2 ratio, up-regulation of p53 expression, and activation of caspase-3. We conclude that Thymax supplementation enhances tumor cell demise by arresting the cell cycle and inducing apoptosis. These data suggest that Thymax could be a new adjuvant for breast cancer treatment.

12.
Nutrients ; 13(11)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34836191

ABSTRACT

The potential of KDP, a lactic acid bacterial strain of Lactobacillus sakei, to enhance the production of mucosal specific immunoglobulin A (IgA) in mice and thereby enhance gut mucosal immunity was examined. KDP is composed of dead cells isolated from the Korean traditional food kimchi. Female BALB/c mice orally received 0.25 mg KDP once daily for 5 weeks and were co-administrated ovalbumin (OVA) for negative control and cholera toxin for positive control. Mice administered KDP exhibited increased secretory IgA (sIgA) contents in the small intestine, Peyer's patches, serum, colon, and lungs as examined by ELISA. KDP also significantly increased the gene expression of Bcl-6, IL-10, IL-12p40, IL-21, and STAT4. In addition, KDP acted as a potent antioxidant, as indicated by its significant inhibitory effects in the range of 16.5-59.4% for DPPH, nitric oxide, maximum total antioxidant capacity, and maximum reducing power. Finally, KDP exhibited potent antimicrobial activity as evidenced by a significant decrease in the growth of 7 samples of gram-negative and gram-positive bacteria and Candida albicans. KDP's adjuvant effect is shown to be comparable to that of cholera toxin. We conclude that KDP can significantly enhance the intestine's secretory immunity to OVA, as well as act as a potent antioxidant and antimicrobial agent. These results suggest that orally administered KDP should be studied in clinical trials for antigen-specific IgA production.


Subject(s)
Anti-Infective Agents/pharmacology , Bacterial Proteins/pharmacology , Immunity, Mucosal/drug effects , Immunoglobulin A, Secretory/drug effects , Intestinal Mucosa/immunology , Latilactobacillus sakei , Animals , Cholera Toxin/pharmacology , Female , Intestine, Small/immunology , Mice , Mice, Inbred BALB C , Ovalbumin/pharmacology
13.
Nutrients ; 13(11)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34836388

ABSTRACT

Influenza-like illness (ILI) remains a major cause of severe mortality and morbidity in the elderly. Aging is associated with a decreased ability to sense pathogens and mount effective innate and adaptive immune responses, thus mandating the development of protective nutraceuticals. Biobran/MGN-3, an arabinoxylan from rice bran, has potent anti-aging and immunomodulatory effects, suggesting that it may be effective against ILI. The objective of the current study was to investigate the effect of Biobran/MGN-3 on ILI incidence, natural killer (NK) cell activity, and the expressions of RIG-1 (retinoic acid-inducible gene 1), MDA5 (melanoma differentiation-associated protein 5), and their downstream signaling genes ISG-15 (interferon-stimulated genes 15) and MX1 (myxovirus (influenza) resistance 1, interferon-inducible). A double-blind, placebo-controlled clinical trial included eighty healthy older adults over 55 years old, 40 males and 40 females, who received either a placebo or Biobran/MGN-3 (500 mg/day) for 3 months during known ILI seasonality (peak incidence) in Egypt. The incidence of ILI was confirmed clinically according to the WHO case definition criteria. Hematological, hepatic, and renal parameters were assessed in all subjects, while the activity of NK and NKT (natural killer T) cells was assessed in six randomly chosen subjects in each group by the degranulation assay. The effect of Biobran/MGN-3 on RIG-1 and MDA5, as well as downstream ISG15 and MX1, was assessed in BEAS-2B pulmonary epithelial cells using flow cytometry. The incidence rate and incidence density of ILI in the Biobran/MGN-3 group were 5.0% and 0.57 cases per 1000 person-days, respectively, compared to 22.5% and 2.95 cases per 1000 person-days in the placebo group. Furthermore, Biobran/MGN-3 ingestion significantly enhanced NK activity compared to the basal levels and to the placebo group. In addition, Biobran/MGN-3 significantly upregulated the expression levels of RIG-1, MDA5, ISG15, and MX1 in the human pulmonary epithelial BEAS-2B cell lines. No side effects were observed. Taken together, Biobran/MGN-3 supplementation enhanced the innate immune response of elderly subjects by upregulating the NK activity associated with reduction of ILI incidence. It also upregulated the intracellular RIG-1, MDA5, ISG15, and MX1 expression in pulmonary epithelial tissue cultures. Biobran/MGN-3 could be a novel agent with prophylactic effects against a wide spectrum of respiratory viral infections that warrants further investigation.


Subject(s)
Dietary Supplements , Immunity, Innate/drug effects , Immunomodulating Agents/administration & dosage , Respiratory Tract Infections/prevention & control , Xylans/administration & dosage , Aged , Cell Line , Cytokines/metabolism , Double-Blind Method , Egypt/epidemiology , Epithelial Cells/drug effects , Female , Flow Cytometry , Humans , Incidence , Interferon-Induced Helicase, IFIH1/metabolism , Killer Cells, Natural/drug effects , Lung/cytology , Lung/immunology , Male , Middle Aged , Myxovirus Resistance Proteins/metabolism , Pilot Projects , Receptors, Retinoic Acid/metabolism , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Seasons , Ubiquitins/metabolism , Up-Regulation/drug effects
14.
Cancer Chemother Pharmacol ; 88(6): 961-971, 2021 12.
Article in English | MEDLINE | ID: mdl-34505929

ABSTRACT

PURPOSE: Methotrexate (MTX) induces hepatotoxicity, limiting its clinical efficacy as a widely known chemotherapy drug. In the current study, we examined the protective effect of human placenta extract (HPE) against MTX-induced liver damage in rats, as well as its ability to regulate antioxidative and anti-inflammatory liver responses. METHODS: Male rats were orally administered MTX at a daily dose of 5 mg/kg-body-weight in the presence or absence of HPE (10.08 mg/kg) for 2 weeks. We measured the biological effects of MTX and HPE on the levels of liver enzymes, lipid profile, lipid peroxidation, oxidative stress biomarkers, and cytokines [tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10)]. In addition, histological examination and histopathological scoring of liver tissues were performed. RESULTS: MTX-treated rats showed significantly increased (p < 0.001) liver enzyme levels for aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bilirubin, total cholesterol, and triglyceride levels. However, HPE supplementation in MTX-treated rats significantly decreased (p < 0.001) these elevated levels. HPE supplementation also significantly reduced the oxidative stress biomarker malondialdehyde (MDA), reversed the reduction in glutathione (GSH), and markedly increased the antioxidant enzyme activities of catalase (CAT) and superoxide dismutase (SOD) in the livers of MTX-treated rats. Furthermore, HPE supplementation significantly decreased the MTX-elevated levels of the pro-inflammatory cytokines TNF-α, IL-6, and IL-10. Histopathological examinations showed that MTX produced severe cellular damage and inflammatory lesions in liver tissues, while treatment with HPE improved hepatic histologic architecture. CONCLUSION: HPE has the ability to ameliorate methotrexate-induced liver injury in rats by mechanisms that include boosting antioxidative responses and down-regulating MDA and pro-inflammatory cytokine production.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Chemical and Drug Induced Liver Injury/prevention & control , Immunosuppressive Agents/toxicity , Methotrexate/toxicity , Placenta/chemistry , Placental Extracts/pharmacology , Alanine Transaminase/metabolism , Animals , Aspartate Aminotransferases/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Female , Glutathione/metabolism , Lipid Peroxidation/drug effects , Liver Function Tests , Male , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Placenta/metabolism , Pregnancy , Rats , Rats, Wistar
15.
Front Pharmacol ; 12: 666502, 2021.
Article in English | MEDLINE | ID: mdl-34366841

ABSTRACT

Sporadic Alzheimer's disease (AD) is the most common neurodegenerative disorder with cognitive dysfunction. Remarkably, alteration in the gut microbiome and resultant insulin resistance has been shown to be connected to metabolic syndrome, the crucial risk factor for AD, and also to be implicated in AD pathogenesis. Thus, this study, we assessed the efficiency of probiotics fermentation technology (PFT), a kefir product, in enhancing insulin signaling via modulation of gut microbiota to halt the development of AD. We also compared its effectiveness to that of pioglitazone, an insulin sensitizer that has been confirmed to substantially treat AD. AD was induced in mice by a single injection of intracerebroventricular streptozotocin (STZ; 3 mg/kg). PFT (100, 200, 400 mg/kg) and pioglitazone (30 mg/kg) were administered orally for 3 weeks. Behavioral tests were conducted to assess cognitive function, and hippocampal levels of acetylcholine (Ach) and ß-amyloid (Aß1-42) protein were assessed along with histological examination. Moreover, the expression of the insulin receptor, insulin degrading enzyme (IDE), and the phosphorylated forms of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), glycogen synthase kinase-3ß (GSK-3ß), mammalian target of rapamycin (mTOR), and tau were detected. Furthermore, oxidative stress and inflammatory biomarkers were estimated. Treatment with PFT reversed STZ-induced neurodegeneration and cognitive impairment, enhanced hippocampal Ach levels, and reduced Aß1-42 levels after restoration of IDE activity. PFT also improved insulin signaling, as evidenced by upregulation of insulin receptor expression and activation of PI3K/Akt signaling with subsequent suppression of GSK-3ß and mTOR signaling, which result in the downregulation of hyperphosphorylated tau. Moreover, PFT significantly diminished oxidative stress and inflammation induced by STZ. These potential effects were parallel to those produced by pioglitazone. Therefore, PFT targets multiple mechanisms incorporated in the pathogenesis of AD and hence might be a beneficial therapy for AD.

16.
Oxid Med Cell Longev ; 2021: 5525306, 2021.
Article in English | MEDLINE | ID: mdl-34306309

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment. Gut microbiota dysfunction (dysbiosis) is implicated in the pathology of AD and is associated with several detrimental consequences, including neurotransmitter depletion, oxidative stress, inflammation, apoptosis, and insulin resistance, which all contribute to the onset of AD. The objective of this study was to assess the effectiveness of Probiotics Fermentation Technology (PFT), a kefir product, in alleviating AD symptoms via regulation of the gut microbiota using a streptozotocin- (STZ-) induced AD mouse model and to compare its activity with simvastatin, which has been proven to effectively treat AD. Mice received one intracerebroventricular injection of STZ (3 mg/kg). PFT (100, 300, 600 mg/kg) and simvastatin (20 mg/kg) were administered orally for 3 weeks. PFT supplementation mitigated STZ-induced neuronal degeneration in the cortex and hippocampus, restored hippocampal acetylcholine levels, and improved cognition in a dose-dependent manner. These effects were accompanied by reductions in oxidative damage, proinflammatory cytokine expression, apoptosis, and tau hyperphosphorylation. Moreover, PFT hindered amyloid plaque accumulation via the enhancement of insulin-degrading enzyme. These beneficial effects were comparable to those produced by simvastatin. The results suggest that PFT can alleviate AD symptoms by regulating the gut microbiota and by inhibiting AD-related pathological events.


Subject(s)
Alzheimer Disease/metabolism , Cognition/drug effects , Fermentation/drug effects , Streptozocin/pharmacology , Animals , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Disease Models, Animal , Male , Mice , Oxidative Stress/drug effects , Streptozocin/metabolism , tau Proteins/metabolism
17.
Oxid Med Cell Longev ; 2021: 8845064, 2021.
Article in English | MEDLINE | ID: mdl-33574982

ABSTRACT

Alzheimer's disease (AD) is a debilitating and irreversible brain disease that affects an increasing number of aged individuals, mandating the development of protective nutraceuticals. Biobran/MGN-3, an arabinoxylan from rice bran, has potent antioxidant, antiaging, and immunomodulatory effects. The aim of the present study was to investigate the protective effect of Biobran against sporadic Alzheimer's disease (SAD). SAD was induced in mice via intracerebroventricular injection of streptozotocin (STZ) (3 mg/kg). STZ-treated mice were administered with Biobran for 21 days. The effects of Biobran on memory and learning were measured via the Morris water maze, novel object recognition, and Y-maze tests. Biomarkers for apoptosis, oxidative stress, and amyloidogenesis were measured using ELISA and western blot analysis. Histopathological examination was performed to confirm neuronal damage and amyloid-beta deposition. Biobran reversed the spatial memory deficit in SAD-induced mice, and it increased the expression of glutathione, reduced malondialdehyde, decreased IL-6, decreased intercellular adhesion molecule-1 (ICAM-1), and significantly increased nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant response element (ARE). Moreover, Biobran exerted a protective effect against amyloid-beta-induced apoptosis via the suppression of both cleaved caspase-3 and the proapoptotic protein Bax and via the upregulation of the antiapoptotic protein Bcl-2. Furthermore, it reduced the expression of forkhead box class O proteins. It could be concluded from this study that Biobran may be a useful nutritional antioxidant agent for protection against SAD through its activation of the gene expression of Nrf2/ARE, which in turn modulates the apoptotic and amyloidogenic pathways.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Apoptosis , Neuroprotective Agents/therapeutic use , Oxidative Stress , Xylans/therapeutic use , Amyloid beta-Peptides/metabolism , Animals , Antioxidant Response Elements/genetics , Apoptosis/drug effects , Behavior, Animal/drug effects , Biomarkers/metabolism , Brain/drug effects , Brain/pathology , Caspase 3/metabolism , Cognition/drug effects , Disease Models, Animal , Forkhead Box Protein O3/metabolism , Glutathione/metabolism , Inflammation/pathology , Male , Malondialdehyde/metabolism , Mice , Morris Water Maze Test , NF-E2-Related Factor 2/metabolism , Neuroprotective Agents/pharmacology , Open Field Test , Oxidative Stress/drug effects , Plaque, Amyloid/pathology , Streptozocin , Toxicity Tests, Acute , Xylans/chemistry , Xylans/pharmacology , bcl-2-Associated X Protein/metabolism
18.
Int J Immunopathol Pharmacol ; 34: 2058738420950149, 2020.
Article in English | MEDLINE | ID: mdl-32862733

ABSTRACT

INTRODUCTION: Oxidative stress is a key contributor to aging and age-related diseases. In the present study, we examine the protective effects of PFT, a novel kefir product, against age-associated oxidative stress using aged (10-month-old) mice. METHODS: Mice were treated with PFT orally at a daily dose of 2 mg/kg body weight over 6 weeks, and antioxidant status, protein oxidation, and lipid peroxidation were studied in the brain, liver, and blood. RESULTS: PFT supplementation significantly reduced the oxidative stress biomarkers malondialdehyde (MDA) and nitric oxide; reversed the reductions in glutathione (GSH) levels, total antioxidant capacity (TAC), and anti-hydroxyl radical (AHR) content; enhanced the antioxidant enzyme activities of glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD); inhibited the liver enzyme levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT); significantly reduced triglyceride (TG), total cholesterol (TC), and low density lipoprotein (LDL) levels; and significantly elevated high density lipoprotein (HDL) levels. Interestingly, PFT supplementation reversed the oxidative changes associated with aging, thus bringing levels to within the limits of the young control mice in the brain, liver, and blood. We also note that PFT affects the redox homeostasis of young mice and that it is corrected post-treatment with PFT. CONCLUSION: Our findings show the effectiveness of dietary PFT supplementation in modulating age-associated oxidative stress in mice and motivate further studies of PFT's effects in reducing age-associated disorders where free radicals and oxidative stress are the major cause.


Subject(s)
Aging , Brain/microbiology , Kefir/microbiology , Lactobacillus/physiology , Liver/microbiology , Oxidative Stress , Probiotics , Age Factors , Animals , Biomarkers/blood , Brain/metabolism , Lactobacillus/isolation & purification , Lipid Peroxidation , Liver/metabolism , Male , Mice , Probiotics/isolation & purification
19.
Oxid Med Cell Longev ; 2020: 4386562, 2020.
Article in English | MEDLINE | ID: mdl-32655767

ABSTRACT

BACKGROUND: Many neurodegenerative diseases such as Alzheimer's disease are associated with oxidative stress. Therefore, antioxidant therapy has been suggested for the prevention and treatment of neurodegenerative diseases. OBJECTIVE: We investigated the ability of the antioxidant Antia to exert a protective effect against sporadic Alzheimer's disease (SAD) induced in mice. Antia is a natural product that is extracted from the edible yamabushitake mushroom, the gotsukora and kothala himbutu plants, diosgenin (an extract from wild yam tubers), and amla (Indian gooseberry) after treatment with MRN-100. METHODS: Single intracerebroventricular (ICV) injection of streptozotocin (STZ) (3 mg/kg) was used for induction of SAD in mice. Antia was injected intraperitoneally (i.p.) in 3 doses (25, 50, and 100 mg/kg/day) for 21 days. Neurobehavioral tests were conducted within 24 h after the last day of injection. Afterwards, mice were sacrificed and their hippocampi were rapidly excised, weighed, and homogenized to be used for measuring biochemical parameters. RESULTS: Treatment with Antia significantly improved mice performance in the Morris water maze. In addition, biochemical analysis showed that Antia exerted a protective effect for several compounds, including GSH, MDA, NF-κB, IL-6, TNF-α, and amyloid ß. Further studies with western blot showed the protective effect of Antia for the JAK2/STAT3 pathway. CONCLUSIONS: Antia exerts a significant protection against cognitive dysfunction induced by ICV-STZ injection. This effect is achieved through targeting of the amyloidogenic, inflammatory, and oxidative stress pathways. The JAK2/STAT3 pathway plays a protective role for neuroinflammatory and neurodegenerative diseases such as SAD.


Subject(s)
Alzheimer Disease/drug therapy , Antioxidants/therapeutic use , Biological Products/therapeutic use , Cognitive Dysfunction/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/psychology , Amyloid beta-Peptides/metabolism , Animals , Autophagy/drug effects , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Cognitive Dysfunction/psychology , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Inflammation , Janus Kinase 2/metabolism , Male , Maze Learning/drug effects , Mice , Oxidative Stress/drug effects , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Streptozocin/adverse effects
20.
BMC Complement Med Ther ; 20(1): 127, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32345289

ABSTRACT

BACKGROUND: The popularity of fermented foods such as kefir, kuniss, and tofu has been greatly increasing over the past several decades, and the ability of probiotic bacteria to exert anticancer effects has recently become the focus of research. While we have recently demonstrated the ability of the novel kefir product PFT (Probiotics Fermentation Technology) to exert anticancer effects in vitro, here we demonstrate its ability to inhibit Ehrlich ascites carcinoma (EAC) in mice. METHODS: Mice were inoculated intramuscularly with EAC cells to develop solid tumors. PFT was administered orally (2 g/kg/day) to mice 6 days/week, either 2 days before tumor cell inoculation or 9 days after inoculation to mice bearing solid tumors. Tumor growth, blood lymphocyte levels, cell cycle progression, apoptosis, apoptotic regulator expression, TNF-α expression, changes in mitochondrial membrane potential (MMP), PCNA, and CD4+ and CD8+ T cells in tumor cells were quantitatively evaluated by flow cytometry or RT-PCR. Further studies in vitro were carried out where EAC cells along with several other human cancer cell lines were cultured in the presence of PFT (0-5 mg/mL). Percent cell viability and IC50 was estimated by MTT assay. RESULTS: Our data shows that PFT exerts the following: 1) inhibition of tumor incidence and tumor growth; 2) inhibition of cellular proliferation via a marked decrease in the expression of tumor marker PCNA; 3) arrest of the tumor cell cycle in the sub-G0/G1 phase, signifying apoptosis; 4) induction of apoptosis in cancer cells via a mitochondrial-dependent pathway as indicated by the up-regulation of p53 expression, increased Bax/Bcl-2 ratio, decrease in the polarization of MMP, and caspase-3 activation; and 5) immunomodulation with an increase in the number of infiltrating CD4+ and CD8+ T cells and an enhancement of TNF-α expression within the tumor. CONCLUSIONS: PFT reduces tumor incidence and tumor growth in mice with EAC by inducing apoptosis in EAC cells via the mitochondrial-dependent pathway, suppressing cancer cell proliferation, and stimulating the immune system. PFT may be a useful agent for cancer prevention.


Subject(s)
Apoptosis , Carcinoma, Ehrlich Tumor/therapy , Immunomodulation , Kefir , Probiotics/therapeutic use , Animals , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Female , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...