Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38611181

ABSTRACT

The present work proposes to investigate the effect of an ultrahigh molecular weight silicone rubber (UHMW-SR) and two ethylene methyl acrylate copolymers (EMA) with different methyl acrylate (MA) content on the mechanical and fire performance of a fireproof acrylonitrile butadiene styrene copolymer (ABS) composite, with an optimum amount of ammonium polyphosphate (APP) and aluminum diethyl phosphinate (AlPi). ABS formulations with a global flame retardant weight content of 20 wt.% (ABS P) were melt-compounded, with and without EMA and UHMW-SR, in a Brabender mixer. During this batch process, ABS P formulations with UHMW-SR and/or EMA registered lower torque values than those of ABS P. By means of scanning electron microscopy (SEM), it was possible to observe that all ABS composites exhibited a homogenous structure without phase separation or particle agglomeration. Slightly improved interfacial interaction between the well-dispersed flame-retardant particles in the presence of EMA and/or UHMW-SR was also noticed. Furthermore, synergies in mechanical properties by adding both EMA and UHMW-SR into ABS P were ascertained. An enhancement of molecular mobility that contributed to the softening of ABS P was observed under dynamic mechanical thermal analysis (DMTA). An improvement of its flexibility, ductility and toughness were also registered under three-point-bending trials, and even more remarkable synergies were noticed in Charpy notched impact strength. Particularly, a 212% increase was achieved when 5 wt.% of EMA with 29 wt.% of MA and 2 wt.% of UHMW-SR in ABS P (ABS E29 S P) were added. Thermogravimetric analysis (TGA) showed that the presence of EMA copolymers in ABS P formulations did not interfere with its thermal decomposition, whereas UHMW-SR presence decreased its thermal stability at the beginning of the decomposition. Although the addition of EMA or UHMW-SR, as well as the combination of both in ABS P increased the pHRR in cone calorimetry, UL 94 V-0 classification was maintained for all flame-retarded ABS composites. In addition, through SEM analysis of cone calorimetry sample residue, a more cohesive surface char layer, with Si-O-C network formation confirmed by Fourier transform infrared (FTIR), was shown in ABS P formulations with UHMW-SR.

2.
Materials (Basel) ; 16(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37241456

ABSTRACT

In this study, an analysis of the influence of extractives, suberin and lignocellulosic components on the pyrolysis decomposition and fire reaction mechanisms of a cork oak powder from Quercus suber L. is presented. The summative chemical composition of cork powder was determined. Suberin was the main component at 40% of the total weight, followed by 24% of lignin, 19% of polysaccharides and 14% of extractives. The absorbance peaks of cork and its individual components were further analyzed by means of ATR-FTIR spectrometry. Thermogravimetric analysis (TGA) showed that the removal of extractives from cork slightly increased the thermal stability between 200 °C and 300 °C and led to the formation of a more thermally stable residue at the end of the cork decomposition. Moreover, by removing suberin, a shift of the onset decomposition temperature to a lower temperature was noticed, indicating that suberin plays a major role in enhancing the thermal stability of cork. Furthermore, non-polar extractives showed the highest flammability with a peak of heat release rate (pHRR) of 365 W/g analyzed by means of micro-scale combustion calorimetry (MCC). Above 300 °C, the heat release rate (HRR) of suberin was lower than that of polysaccharides or lignin. However, below that temperature it released more flammable gases with a pHRR of 180 W/g, without significant charring ability, contrary to the mentioned components that showed lower HRR due to their prominent condensed mode of action that slowed down the mass and heat transfer processes during the combustion process.

SELECTION OF CITATIONS
SEARCH DETAIL
...