Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732052

ABSTRACT

Fatty acid desaturase 1 (FADS1) is a rate-limiting enzyme in long-chain polyunsaturated fatty acid (LCPUFA) synthesis. Reduced activity of FADS1 was observed in metabolic dysfunction-associated steatotic liver disease (MASLD). The aim of this study was to determine whether adeno-associated virus serotype 8 (AAV8) mediated hepatocyte-specific overexpression of Fads1 (AAV8-Fads1) attenuates western diet-induced metabolic phenotypes in a rat model. Male weanling Sprague-Dawley rats were fed with a chow diet, or low-fat high-fructose (LFHFr) or high-fat high-fructose diet (HFHFr) ad libitum for 8 weeks. Metabolic phenotypes were evaluated at the endpoint. AAV8-Fads1 injection restored hepatic FADS1 protein levels in both LFHFr and HFHFr-fed rats. While AAV8-Fads1 injection led to improved glucose tolerance and insulin signaling in LFHFr-fed rats, it significantly reduced plasma triglyceride (by ~50%) and hepatic cholesterol levels (by ~25%) in HFHFr-fed rats. Hepatic lipidomics analysis showed that FADS1 activity was rescued by AAV8-FADS1 in HFHFr-fed rats, as shown by the restored arachidonic acid (AA)/dihomo-γ-linolenic acid (DGLA) ratio, and that was associated with reduced monounsaturated fatty acid (MUFA). Our data suggest that the beneficial role of AAV8-Fads1 is likely mediated by the inhibition of fatty acid re-esterification. FADS1 is a promising therapeutic target for MASLD in a diet-dependent manner.


Subject(s)
Delta-5 Fatty Acid Desaturase , Diet, Western , Fatty Acid Desaturases , Hepatocytes , Rats, Sprague-Dawley , Animals , Fatty Acid Desaturases/metabolism , Fatty Acid Desaturases/genetics , Male , Rats , Delta-5 Fatty Acid Desaturase/metabolism , Diet, Western/adverse effects , Hepatocytes/metabolism , Phenotype , Disease Models, Animal , Dependovirus/genetics , Liver/metabolism , Triglycerides/metabolism , Fructose/metabolism
2.
Nutrients ; 15(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37892472

ABSTRACT

PURPOSE: Chemokine-driven leukocyte infiltration and sustained inflammation contribute to alcohol-associated liver disease (ALD). Elevated hepatic CCL2 expression, seen in ALD, is associated with disease severity. However, mechanisms of CCL2 regulation are not completely elucidated. Post-translational modifications (PTMs) of proteins, particularly acetylation, modulate gene expression. This study examined the acetylation changes of promoter-associated histone-H3 and key transcription factor-NFκB in regulating hepatic CCL2 expression and subsequent inflammation and injury. Further, the effect of therapeutic modulation of the acetylation state by tributyrin (TB), a butyrate prodrug, was assessed. METHODS: Hepatic CCL2 expression was assessed in mice fed control (PF) or an ethanol-containing Lieber-DeCarli (5% v/v, EF) diet for 7 weeks with or without oral administration of tributyrin (TB, 2 g/kg, 5 days/week). A chromatin immunoprecipitation (ChIP) assay evaluated promoter-associated modifications. Nuclear association between SIRT1, p300, and NFκB-p65 and acetylation changes of p65 were determined using immunoprecipitation and Western blot analyses. A Student's t-test and one-way ANOVA determined the significance. RESULTS: Ethanol significantly increased promoter-associated histone-H3-lysine-9 acetylation (H3K9Ac), reflecting a transcriptionally permissive state with a resultant increase in hepatic CCL2 mRNA and protein expression. Moreover, increased lysine-310-acetylation of nuclear RelA/p65 decreased its association with SIRT1, a class III HDAC, but concomitantly increased with p300, a histone acetyltransferase. This further led to enhanced recruitment of NF-κB/p65 and RNA polymerase-II to the CCL2 promoter. Oral TB administration prevented ethanol-associated acetylation changes, thus downregulating CCL2 expression, hepatic neutrophil infiltration, and inflammation/ injury. CONCLUSION: The modulation of a protein acetylation state via ethanol or TB mechanistically regulates hepatic CCL2 upregulation in ALD.


Subject(s)
Hepatitis , Histones , Mice , Animals , Histones/metabolism , NF-kappa B/metabolism , Ethanol , Lysine/metabolism , Sirtuin 1/metabolism , Acetylation , Protein Processing, Post-Translational , Inflammation
3.
Endocr Connect ; 9(10): 1009-1018, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33064664

ABSTRACT

Low plasma levels of sex hormone-binding globulin (SHBG) are a marker for obesity, insulin resistance, non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes. The transcription factor HNF4α is a major determinant of hepatic SHBG expression and thereby serum SHBG levels, and mediates in part the association of low SHBG with hyperinsulinemia and hepatic steatosis. We analyzed the lipidome in human liver specimens from a cohort of patients who underwent hepatic resection as a treatment for cancer, providing insight into hepatic lipids in those without extreme obesity or the clinical diagnosis of NAFLD or non-alcoholic steatohepatitis. Both steatosis and high HOMA-IR were associated with higher levels of saturated and unsaturated FA, other than arachidonic, with the most dramatic rise in 18:1 oleate, consistent with increased stearoyl-CoA desaturase activity. Individuals with low HOMA-IR had low levels of total hepatic fatty acids, while both low and high fatty acid levels characterized the high HOMA-IR group. Both insulin resistance and high levels of hepatic fat were associated with low expression levels of HNF4α and thereby SHBG, but the expression of these genes was also low in the absence of these determinants, implying additional regulatory mechanisms that remain to be determined. The relationship of all FA studied to HNFα and SHBG mRNAs was inverse, and similar to that for total triglyceride concentrations, irrespective of chain length and saturation vs unsaturation.

4.
J Clin Endocrinol Metab ; 99(12): E2780-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25226295

ABSTRACT

CONTEXT: The plasma level of sex hormone binding globulin (SHBG), a glycoprotein produced by hepatocytes, is subject to genetic, hormonal, metabolic, and nutritional regulation, and is a marker for the development of the metabolic syndrome and diabetes. OBJECTIVE: Because the mechanism for these associations is unclear, and no studies of SHBG gene expression in humans have been published, SHBG mRNA was measured in human liver samples and related to anthropometric data. SETTING: Inpatients at a private, nonprofit, university-associated hospital were studied. PARTICIPANTS: Subjects were fifty five adult men and women undergoing hepatic resection as treatment for cancer. MAIN OUTCOME MEASURES: Main outcome measures were SHBG mRNA and serum SHBG levels. RESULTS: SHBG mRNA was a strong predictor of serum SHBG with higher levels of the mRNA and protein in women than in men. The relationship between SHBG mRNA and circulating SHBG differed in males and females consistent with a sex difference in post-transcriptional regulation. A strong positive correlation was found between the level of the mRNA for the transcription factor HNF4α and SHBG mRNA. Insulin resistance (IR), assessed by homeostatis model assessment, was related inversely to SHBG mRNA and to HNF4α mRNA as well as to circulating SHBG levels. These mRNAs, as well as serum SHBG, were higher when the hepatic triglyceride concentration was low, and decreased with increasing body mass index but were unrelated to age. CONCLUSIONS: Fat accumulation in liver and IR are important determinants of SHBG gene expression and thereby circulating SHBG levels that are perhaps mediated through effects on the transcription factor HNF4α. These findings provide a potential mechanism to explain why low SHBG predicts the development of type 2 diabetes.


Subject(s)
Insulin Resistance/genetics , Sex Hormone-Binding Globulin/genetics , Adult , Aged , Aged, 80 and over , Diabetes Mellitus, Type 2/genetics , Fatty Liver/genetics , Fatty Liver/pathology , Female , Gene Expression/genetics , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Humans , Liver/metabolism , Male , Metabolic Syndrome/genetics , Middle Aged
5.
Endocrinology ; 155(7): 2647-57, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24823390

ABSTRACT

Pituitary adenylate cyclase-activating polypeptide (PACAP) is expressed at a high level in the fetal pituitary and decreases profoundly between embryonic day 19 and postnatal day 1 (PN1), with a further decrease from PN1 to PN4. In this series of experiments, we investigated the hypothesis that dopamine 2 receptor (Drd2) activation interrupts a cAMP-dependent feed-forward loop that maintains PACAP expression at a high level in the fetal pituitary. Using single-cell RT-PCR of pituitary cell cultures from newborn rats, Drd2 mRNA was identified in gonadotrophs that were also positive for PACAP mRNA. PACAP expression in pituitary cultures from embryonic day 19 rats was suppressed by the PACAP6-38 antagonist and by the Drd2 agonist bromocriptine. Increasing concentrations of bromocriptine inhibited cAMP production as well as cAMP signaling based on cAMP response element-luciferase activity, decreased PACAP promoter activity, and decreased PACAP mRNA levels in αT3-1 gonadotroph cells. Furthermore, blockade of dopamine receptors by injecting haloperidol into newborn rat pups partially reversed the developmental decline in pituitary PACAP mRNA that occurs between PN1 and PN4. These results provide evidence that dopamine receptor signaling regulates PACAP expression under physiological conditions and lend support to the hypothesis that a rise in hypothalamic dopamine at birth abrogates cAMP signaling in fetal gonadotrophs to interrupt a feed-forward mechanism that maintains PACAP expression at a high level in the fetal pituitary. We propose that this perinatal decline in pituitary PACAP reduces pituitary follistatin which permits GnRH receptors and FSH-ß to increase to facilitate activation of the neonatal gonad.


Subject(s)
Gene Expression , Gonadotrophs/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Receptors, Dopamine D2/genetics , Animals , Animals, Newborn , Blotting, Western , Bromocriptine/pharmacology , Cells, Cultured , Cyclic AMP/metabolism , Dopamine D2 Receptor Antagonists , Female , Flavonoids/pharmacology , Gonadotrophs/cytology , Gonadotrophs/drug effects , Haloperidol/pharmacology , MAP Kinase Signaling System/drug effects , Mice , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Pituitary Gland/cytology , Pituitary Gland/embryology , Pituitary Gland/metabolism , Pregnancy , Promoter Regions, Genetic/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D2/agonists , Reverse Transcriptase Polymerase Chain Reaction
6.
Biol Reprod ; 77(6): 1017-26, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17715432

ABSTRACT

CDB-4022, an indenopryridine, suppresses spermatogenesis and decreases inhibin secretion in adult male rats. In the present study, we investigated the effects of CDB-4022 on Leydig cell function. A single oral dose of CDB-4022 (2.5 mg/kg) resulted in a 2-fold decrease in serum testosterone levels after 7 days that was paralleled by a decrease in Cyp17a1 mRNA and protein levels and 17alpha hydroxylase enzymatic activity compared with vehicle-treated rats. Consistent with the lower serum testosterone levels, pituitary Lhb and Fshb mRNA levels were increased 3.2- and 2.3-fold, respectively, by CDB-4022 treatment. Ultrastructural analysis of pituitary gonadotrophs showed distended endoplasmic reticulum (ER) and fewer secretory granules in CDB-4022-treated rats, characteristic of enhanced secretory activity. Conversely, CDB-4022 increased serum progesterone levels, testicular Star mRNA and protein expression, and the number of Leydig cells per testis. Serum inhibin B levels were undetectable in CDB-4022-treated rats, while serum activin A levels were similar to controls, indicating that the CDB-4022-treated rats have an elevated activin A:inhibin B ratio. In the presence of hCG stimulation, activin A directly suppressed testosterone secretion but enhanced progesterone secretion from rat Leydig cell primary cultures. Likewise, treatment of MA-10 cells with activin A was found to enhance cAMP-stimulated progesterone secretion and STAR expression. Together, our data indicate that CDB-4022 treatment inhibits CYP17A1 and stimulates STAR expression, thereby decreasing testosterone but increasing progesterone production. We propose that unopposed actions of activin A most likely contribute to the steroid profile in rats after CDB-4022 treatment. Our findings establish CDB-4022 as a new model to examine intratesticular control mechanisms that modulate Leydig cell gene expression and function.


Subject(s)
Activins/metabolism , Gonadal Steroid Hormones/metabolism , Indenes/pharmacology , Leydig Cells/drug effects , Phosphoproteins/metabolism , Piperidines/pharmacology , Activins/blood , Animals , Cell Line, Tumor , Gene Expression Profiling , Gonadal Steroid Hormones/blood , Inhibins/blood , Leydig Cells/metabolism , Male , Mice , Pituitary Gland/metabolism , Pituitary Gland/ultrastructure , RNA/metabolism , Rats , Rats, Sprague-Dawley , Steroid 17-alpha-Hydroxylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...