Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 5(24): 6944-6957, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38059027

ABSTRACT

The current article presents a huge enhancement in the field emission characteristics of zinc oxide (ZnO) micro/nanorods by nickel doping. The synthesis of pure and nickel-doped zinc oxide (ZnO) micro/nanorods was done by a simple low-temperature chemical method. Both the as-prepared pure and doped samples were analyzed by X-ray diffraction and electron microscopy to confirm the proper phase formation and the developed microstructure. UV-vis transmittance spectra helped in determining the band gap of the samples. Fourier-Transform Infrared Spectroscopy (FTIR) spectra showed the different bonds present in the sample, whereas X-ray Photoelectron Spectroscopy (XPS) confirmed the presence of nickel in the doped sample. Photoluminescence (PL) spectra showed that after doping, the band-to-band transition was affected, whereas defect-induced transition had increased significantly. After the nickel doping, contact angle measurement revealed a significant decrease in the sample's surface energy, leading to a remarkably high water contact angle (within the superhydrophobic region). Simulation through ANSYS suggested that the doped sample has the potential to function as an efficient cold emitter, which was also verified experimentally. The cold emission characteristics of the doped sample showed a significant improvement, with the turn-on field (corresponding to J = 1 µA cm-2) reduced from 5.34 to 2.84 V µm-1. The enhancement factor for the doped sample reached 3426, approximately 1.5 times higher compared to pure ZnO. Efforts have been made to explain the results, given the favorable band bending as well as the increased number of effective emission sites.

2.
Dalton Trans ; 47(13): 4501-4507, 2018 Mar 26.
Article in English | MEDLINE | ID: mdl-29505061

ABSTRACT

Zinc oxide (ZnO) nanorods (NRs) wrapped with graphitic carbon nitride (GCN) nanosheet (NS) hybrids have been synthesized by a simple chemical process. The as-prepared samples are characterized by X-ray diffraction, field emission scanning electron microscopy, high resolution transmission electron microscopy, Fourier transformed infrared spectroscopy, UV-Vis spectroscopy and photoluminescence spectroscopy. The images obtained from the transmission electron microscopic study and the existence of C-N stretching modes as observed from Fourier transform infrared spectroscopy confirm the successful attachment of GCN NSs onto the ZnO NRs. It is seen that hybrid samples show broad photoluminescence (PL) emission with enhanced defect related emission along with a quenching effect due to the charge transfer mechanism. The results have been explained by taking into consideration the three different types of electron transitions occurring within the type-II band structure of the hybrid samples. Moreover a study on the conductivity of the samples is carried out under dark conditions and also under ultraviolet (UV) light irradiation. It is observed that the hybrid samples show significantly improved conductivity under both dark and UV irradiated conditions. The absorbance of the samples in the UV range shows better conductivity under UV conditions as compared to dark conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...