Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 8(20): e2102279, 2021 10.
Article in English | MEDLINE | ID: mdl-34402215

ABSTRACT

The Poynting effect generically manifests itself as the extension of the material in the direction perpendicular to an applied shear deformation (torsion) and is a material parameter hard to design. Unlike isotropic solids, in designed structures, peculiar couplings between shear and normal deformations can be achieved and exploited for practical applications. Here, a metamaterial is engineered that can be programmed to contract or extend under torsion and undergo nonlinear twist under compression. First, it is shown that the system exhibits a novel type of inverted Poynting effect, where axial compression induces a nonlinear torsion. Then the Poynting modulus of the structure is programmed from initial negative values to zero and positive values via a pre-compression applied prior to torsion. The work opens avenues for programming nonlinear elastic moduli of materials and tuning the couplings between shear and normal responses by rational design. Obtaining inverted and programmable Poynting effects in metamaterials inspires diverse applications from designing machine materials, soft robots, and actuators to engineering biological tissues, implants, and prosthetic devices functioning under compression and torsion.


Subject(s)
Models, Theoretical , Printing, Three-Dimensional , Shear Strength/physiology , Stress, Mechanical , Elastic Modulus/physiology , Elasticity , Pressure
2.
Adv Mater ; 33(30): e2008082, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34121234

ABSTRACT

The design of advanced functional devices often requires the use of intrinsically curved geometries that belong to the realm of non-Euclidean geometry and remain a challenge for traditional engineering approaches. Here, it is shown how the simple deflection of thick meta-plates based on hexagonal cellular mesostructures can be used to achieve a wide range of intrinsic (i.e., Gaussian) curvatures, including dome-like and saddle-like shapes. Depending on the unit cell structure, non-auxetic (i.e., positive Poisson ratio) or auxetic (i.e., negative Poisson ratio) plates can be obtained, leading to a negative or positive value of the Gaussian curvature upon bending, respectively. It is found that bending such meta-plates along their longitudinal direction induces a curvature along their transverse direction. Experimentally and numerically, it is shown how the amplitude of this induced curvature is related to the longitudinal bending and the geometry of the meta-plate. The approach proposed here constitutes a general route for the rational design of advanced functional devices with intrinsically curved geometries. To demonstrate the merits of this approach, a scaling relationship is presented, and its validity is demonstrated by applying it to 3D-printed microscale meta-plates. Several applications for adaptive optical devices with adjustable focal length and soft wearable robotics are presented.

3.
Phys Rev E ; 95(5-1): 052412, 2017 May.
Article in English | MEDLINE | ID: mdl-28618581

ABSTRACT

By taking into account the hydrodynamic interactions in a one dimensional array of model cilia attached to a no-slip cylinderical surface, we investigate their synchronized motion. We show how the emergence of metachronal waves depends on the initial state of the system and investigate the conditions under which the formation of symplectic and antiplectic waves are possible.


Subject(s)
Cilia/physiology , Models, Biological , Hydrodynamics , Motion , Movement , Periodicity
SELECTION OF CITATIONS
SEARCH DETAIL
...