Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Res Forum ; 14(1): 29-37, 2023.
Article in English | MEDLINE | ID: mdl-36816859

ABSTRACT

Given the development of drug-resistant cancer cells, designing alternative approaches for cancer treatment seems essential. In this study, we evaluated the anti-tumor effects of nisin A and Newcastle disease virus (NDV) on triple-negative MDA-MB-231 cell line. The MDA-MB-231 cell line was separately and in combination subjected to the different concentrations of a Vero-adapted NDV (JF820294.1) and nisin A. The oncolytic effects of these treatments were analyzed by different cytotoxic and apoptosis techniques including trypan blue staining, MTT assay, acridine orange (EB/AO) staining, colony assay and flow cytometry over time. Nisin A at doses of more than 20.00 µg mL-1 could represent the anti-viral effects and interfere with the oncolytic activity of NDV. Moreover, the analyses indicated that the anti-proliferative and cytotoxic features of combination therapy were stronger than those of individual NDV groups. However, the most apoptotic effect was seen in NDV experimental groups. Taken together, the results from cytotoxicity tests, flow cytometry and colony assay showed that either of the oncolytic agents had significant effects at low concentrations 72 hr post-treatment. Thereby, they had the potential to be used as new approaches in cancer treatment.

2.
Mikrochim Acta ; 187(2): 105, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31916024

ABSTRACT

A nanobiocomposite was prepared from multiwalled carbon nanotubes and zein nanoparticles. It was dispersed in water/ethanol and drop cast onto a glassy carbon electrode. The modified electrode can be used for electroreduction of H2O2 (typically at a working potential of -0.71 V vs. Ag/AgCl). The electrochemical properties of the electrode were investigated by cyclic voltammetry, linear sweep voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Response to H2O2 is linear in the 0.049 to 22 µM concentration range, and the detection limit is 35 nM at pH 7.0. The sensor was successfully utilized for the measurement of H2O2 in a synthetic urine sample, and for monitoring the release of H2O2 from human dermal fibroblasts and human hepatocellular carcinoma cells. Graphical abstractSchematic representation of a novel metal- and enzyme-free electrochemical nanosensor. A glassy carbon electrode was modified with a nanocomposite prepared from multiwalled carbon nanotubes and zein nanoparticles. It was applied to the identification of liver cancer cells via sensing of H2O2 and has a very low detection limit.


Subject(s)
Hydrogen Peroxide/analysis , Liver Neoplasms/diagnosis , Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Zein/chemistry , Carbon/chemistry , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Fibroblasts , Hep G2 Cells , Humans , Hydrogen Peroxide/urine , Limit of Detection , Nanocomposites/chemistry , Reproducibility of Results , Tetradecanoylphorbol Acetate/analogs & derivatives , Tetradecanoylphorbol Acetate/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...