Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Iran J Pharm Res ; 22(1): e137226, 2023.
Article in English | MEDLINE | ID: mdl-38116572

ABSTRACT

Background: Abnormal DNA methylation patterns have been reported in various diseases, including different cancers. CRISPR/Cas9 is a low-cost and highly effective gene editing tool that has lately revolutionized biotechnology. Studies have shown that the CRISPR/Cas9 system can effectively target and correct methylation. Objectives: Telomerase plays a survival role for cancer cells. It is encoded by the hTERT gene. The effectiveness of CRISPR/Cas9 in targeting hTERT to treat glioma cancer cells was assessed in this study. Methods: EF1a-hsaCas9-U6-gRNA vector carrying sgRNA and Cas9 hybrids were used to transfect U87 glioma cells. Four and eight µg/mL polybrene concentrations were investigated to improve transfection efficiency. The expression level of hTERT that has undergone metabisulfite modification was assessed using real-time PCR. Flow cytometry and Western blotting were also used to determine whether telomerase was present in the cells. High-resolution melting analysis (HRM) was used to examine the hTERT promoter's methylation. Finally, flow cytometry was used to measure the apoptotic rate of transfected U87 cells. Results: The findings demonstrated that gRNA significantly boosted transfection effectiveness. Significant variations were seen in the expression of hTERT in U87 cells at 4 µg/mL polybrene and 80 µg/mL transfection compared to transfection without gRNA and basal cells. Flow cytometry showed a decrease in hTERT levels in transfected cells. Furthermore, transfection with gRNA increased U87 cell apoptosis compared to transfection without gRNA. Conclusions: It appears that the designed CRISPR/Cas9 system can reduce hTERT expression and telomerase activity and thus inhibit glioma cell growth.

2.
Gene ; 828: 146477, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35398175

ABSTRACT

CRISPR-Cas9 gene-editing technology has pushed the boundaries of genetic modification. The principle of this method is based on the purposeful defense system of DNA degradation and will be one of the most powerful instruments for gene editing shortly. The purpose of this study was to evaluate the capability of this approach to manage melanoma cells. The present study used EF1a-hsaCas9-U6-gRNA as a hybrid vector of sgRNA and Cas9 for the transfection of A-375 melanoma cells. Transfection efficiency was enhanced by examining the two concentrations of 4 and 8 µg/mL of hexadimethrine bromide (trade name Polybrene). The existence of Cas9 in transfected cells was detected by flow cytometry. The expression level of the metabisulfite-modified hTERT gene was measured by real-time PCR technique. The presence of telomerase in cells was determined by flow cytometry and western blotting analysis. The hTERT gene promoter methylation was also evaluated by HRM assay. Finally, the induction of apoptosis in transfected A375 cells was assessed using flow cytometry. The results showed that the presence of gRNA significantly increased the transfection efficiency (up to about 7.75 times higher). The hTERT expression levels in A-375 cells were significantly decreased at different concentrations of Polybrene (in a dose-dependent manner) and various amounts of transfection (P < 0.05). The expression of hTERT in basal cells was not significantly different from the group transfected without gRNA (P˃0.05) but was significantly higher than the group transfected with gRNA (P < 0.05). The results of flow cytometry and western blotting analysis showed a decrease in hTERT level compared to cells transfected without gRNA as well as basal cells. The methylation of hTERT gene promoter in the cells transfected with gRNA at a concentration of 80 µg/mL in the presence of both 4 µg/mL and 8 µg/mL of Polybrene was significantly increased compared to those transfected without sRNA (P < 0.05). The flow cytometry results indicated no significant difference in the induction of apoptosis in the transfected cells compared to the basal cells (P < 0.05). Evidence suggests that the designed CRISPR/Cas9 system reduces the expression of the hTERT gene and telomerase presence, thereby inhibiting the growth of melanoma cells.


Subject(s)
Melanoma , Telomerase , Gene Editing/methods , Hexadimethrine Bromide/metabolism , Humans , Melanoma/genetics , RNA, Guide, Kinetoplastida/genetics , Telomerase/genetics , Telomerase/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...